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UNE CARACTERISATION
DU PLAN PROJECTIF COMPLEXE

par Jean d’ALMEIDA

INTRODUCTION

On considére une droite L du plan projectif complexe P2. Si on fixe
n points Py,P,, -+, P, sur L, il est possible de trouver une courbe
algébrique de degré n passant par les points P;. Il suffit de prendre une
réunion de droites. Il est également facile de trouver une courbe passant par
les points P; et ayant en chacun de ces points une tangente fixée d’avance. Si
I’on impose des conditions du second ordre alors il existe une condition
(nécessaire et suffisante) pour I’existence de la courbe algébrique.

Supposons que f(x,y) soit une équation affine de C, L la droite
d’équation x = 0 et que les points d’intersection de C et L soient a distance
finie sur I’axe des y.

On a alors la relation de Reiss:

Z fxxf)zz - 2'fxyfxfy + fyyf)zg _
/5

la somme étant étendue aux points d’intersection ([GH], p. 675).

Soit I I’idéal définissant la droite L dans P2et &, = & /I*+! le faisceau
structural du p-i€me voisinage infinitésimal L(p) = (L, Z,). La donnée
d’éléments d’arc d’ordre p est équivalente & la donnée d’un faisceau
inversible <, sur L, et d’une section o,y € H*(Z,)).

On peut alors montrer qu’on a une surjection Pic P2 — PicL (1) ou Pic
désigne le groupe de Picard mais on a une suite exacte

0,

0= PicP?2—->PicL2)—-C—0.

Il'y a donc une condition pour que & (2) € Pic L(2) soit la restriction d’un
faisceau inversible & e PicP2. C’est la relation de Reiss ([GH], p. 698).
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On s’intéresse au probléme analogue en remplacant P2 par une surface
projective lisse et L par un diviseur D. On montrera que [’obstruction existe
des le premier ordre. Il existe donc dés le premier ordre des analogues de la
relation de Reiss pour toute surface autre que P2.

PROPOSITION 1. Soit S une surface projective lisse sur C et D une
courbe lisse irréductible. On suppose que le diviseur 2D est trés ample.
Soit D(1) le premier voisinage infinitésimal de D,D(1) = (D, Zs/I?)
ou I estle faisceau définissant D dans S. Le morphisme de restriction
PicS = PicD(1) est surjectif si et seulement si S est le plan projectif
et D une droite.

Démonstration. On considére la suite exacte 0> 1+ 12— 275> 05 ,,~0
ol 1 + 7? désigne le faisceau multiplicatif des fonctions 1 + f ou f
s’annule a l’ordre deux le long de D. On a 1+ I? =12 (J[GH], p. 699).
On en déduit la suite exacte PicS->PicD(1)— H2(I) > H*(£%) — 0.
L’obstruction au relévement d’un faisceau inversible & (1) € PicD(1) est donc
dans le conoyau du morphisme a c¢’est-a-dire dans le noyau du morphisme b.
Le morphisme b se factorise a travers la fléche naturelle H2(12) —» H?*(7s).

Il en résulte que Ker b contient

Ker (H?(I2) —» H*(Z5)) .

Si ce dernier espace est non nul on a une obstruction au relevement.
S’il est nul, alors la suite exacte 0 — [?2— Zs— /pay— 0 montre que
H?2(I?) = H?(/s). Par dualité de Serre, on a donc H°(Zs2D+Ks)) = H°(K5)
ou K est le diviseur canonique de S. On en déduit facilement que le faisceau
752D + Ks) n’est pas engendré par ses sections globales. D’apres [S]
ou [V], si H est un fibré en droites trés ample sur une surface projective lisse
complexe S tel que H + K ne soit pas engendré par ses sections globales
alors on a deux possibilités:

) H= 71)ou Z(Q2) sur P?;

ii) H est un fibré sur une surface géométriquement réglée et la restriction
de H & chaque fibre de la surface est de degré 1.

Dans notre situation H = Zs(2D). Le cas ou S est géométriquement
réglée est donc exclu.

Dans le cas ou S = P2 on a H*(#Z},) = 0. Ceci résulte de la suite exacte
de D’exponentielle en tenant compte de H?(Z,:) = H*(P?,Z) =0. Le
conoyau de la fleche a est donc H2(Z,.(—2D)) ou par dualité de Serre
H(7,22D) ® Z,2(—3))".

Ceci est nul si D est une droite et non nul si D est une conique.
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THEOREME 2. Soit S une surface projective lisse minimale sur C
et D une courbe lisse irréductible de self intersection D? > 0. Soit D(1)
le premier voisinage infinitésimal de D,D(l) = (D, ?s/1?) ou I
est le faisceau définissant D dans S. Le morphisme de restriction
PicS — Pic(D(1)) est surjectif si et seulement si S est le plan projectif
et D une droite.

Démonstration. Comme précédemment on a la suite exacte
PicS % PicD(1) » H2(I?) > H2(£¥) ~0 .

L’obstruction au relévement est dans Ker » qui contient Ker (H2(I2)— H?*(Zs)).
Si Ker (H2(I2) = H*(/s)) est non nul, on a une obstruction au relé-

vement. S’il est nul on obtient H2(I2 = H2(/s)). 1l en résulte la suite

exacte

0~ HO(s5) — HO(Opy) = H'(I?) > H' (O5) » H (£pu) > 0. (o)

La suite exacte 0 > [ = Zg— Zp— 0 donne
0—>H'(I)—> H'(Is) > H' (Fp) > H*(I) > H*(75) > 0. (B)

La suite exacte 0—>I2—>T—1/I?—-0 donne une surjection H?2(I?)
— H?>({) > 0. En effet I/1? est un Zp-module. C’est le fibré conormal
de D dans S,1/1? = Zp(— D).

En résumé on a une surjection H2(l) »> H?(Z/s) — 0, une surjection
H?(1?)— H?>(I) — 0 et un morphisme H?2(I?) = H?(Zs). Il en résulte que
H?(I?) = H*(I) = H*(Z5). La suite (B) donne alors Ah!(Zs) = hl(I)
+ h'(Zp). La suite exacte 0 > I?—> [ — [/I> — donne 0 > H!(I?) —» H'(I)
— H'(I/1%?)— 0. En effet ’hypothése D? > 0 donne H(I/I2?) = 0. De
plus H2(I?) = H*>(I) et H2(I/I?) = 0. Le théoréme de Riemann-Roch
sur la courbe D donne A'(I/I?) = D?> + g — 1. Je dis que D est numéri-
quement effectif.

En effet soit C une courbe de S. On écrit C = D’ + nD avec n >0
et D’ ne contient pas D. Alors CD = D’'D + nD? > 0.

Le théoréme d’annulation de Kawamata-Viehweg (ou de Ramanujam)
donne A'(Zs(— D)) = hi(I) = 0.

Il en résulte que A'(1?) = h'(I/1?) = 0. Mais h'(I/I?)=D?>+ g — 1
avec D* > 0. On obtient alors D2 = 1 et g = 0. Ceci nous donne 4°(Z(D))
= h%(7s) + h°(Fp(D)) =3 car Fp(D) = £, (1). On a alors sur la
surface S une courbe rationnelle irréductible D telle que h°(Zs(D)) > 2.
La surface S est donc rationnelle d’apreés le lemme de Noether (IGH], p. 513).
La surface S est donc P2, une surface de Hirzebruch P(O, ® O, (— e)),
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e =20, e #1, ou I’éclatement d’une de ces surfaces. Si S = P2, D est une
droite car D2 = 1. Si S = P(£,1 ® &,:(— e)), D s’écrit D = aCy + b f ou
Co est une section vérifiant C; = —e et f une fibre de la surface réglée.
Ona f2=0e Cyf = 1.

Le diviseur canonique est K=2Cy+ (-2 —e)f. On doit avoir
D? = —qa?%e + 2ab = 1. La formule d’adjonction donne —2 = D(D + K).
Ces deux relations donnent le systéeme a(—ae + 2b) =1 et a? —2a — 2b = 3.
On connait les courbes irréductibles lisses tracées sur les surfaces de
Hirzebruch. Les possibilités sont les suivantes:

a=0 b=1
a=1 b=0
a>0 b>ae
e>0 a>0 b=ae.

Ici on obtient a =1 et 2b = e + 1. Ceci n’est compatible avec b > e que
pour e < 1. La valeur e = 0 est exclue car b est entier. La valeur e = 1 est
exclue car elle correspond a une surface non minimale. C’est en effet le plan
projectif éclaté en un point. C.Q.F.D.

Remarques. On ne peut supprimer I’hypothése S minimale dans le
théoreme. En effet si S est I’éclatement de P2 en un point et D la trans-
formée d’une droite générale de P? alors

PicS — PicD(1) est surjectif .

Soit (S, Z5(D)) # (P2, #(1)). Si Z(1) est un fibré en droites sur D(1)
qui est restriction d’un fibré & sur S, il faut pour résoudre complétement
le probléme de Reiss pouvoir relever les sections.

Soit 6 (1) € H°(Z (1)). La suite exacte

0-I2QR K> ->Z2A)—0
donne
0> HY(I*®R X)) H (YY) H(ZN)) > H'(I*®R &) .

Si H'(I? ® &) = 0, on pourra toujours relever une section. La relation de
Reiss a été obtenue en 1837 [R]. Une généralisation au cas des hypersurfaces
d’un espace projectif a été obtenue par Wood [W]. Une généralisation au cas
des sous-variétés d’un espace projectif a été obtenue par Akivis [A]. Little [L]
a obtenu les relations de Reiss du 1¢* ordre pour les courbes tracées sur des
surfaces de Hirzebruch. On peut se demander si la caractérisation du plan
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projectif obtenue ici s’étend & P”, n > 3. De facon précise si M est une

variété projective lisse de dimension 7 et C une courbe lisse irréductible de M,

que peut-on déduire de la surjectivité de PicM — PicC(1)? 1l faut faire des

hypothéses convenables sur le fibré normal de C dans M. Il faut aussi trouver

par quoi remplacer I’hypothése S minimale. Il serait intéressant de relier ceci

a la caractérisation de I’espace projectif par I’amplitude du fibré tangent [M].
Nous espérons aborder ces questions dans un travail ultérieur.

[GH]
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