Zeitschrift: L'Enseignement Mathématique
Herausgeber: Commission Internationale de I'Enseignement Mathématique

Band: 41 (1995)

Heft: 1-2: L'ENSEIGNEMENT MATHEMATIQUE
Artikel: HIGHER EULER CHARACTERISTICS (l)
Autor: Geoghegan, Ross / Nicas, Andrew

DOl: https://doi.org/10.5169/seals-61816

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 24.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-61816
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

L’Enseignement Mathématique, t. 41 (1995), p. 3-62

HIGHER EULER CHARACTERISTICS (I)

by Ross GEOGHEGAN'!) and Andrew NICAS?)

To Peter Hilton on the occasion of his 70-th birthday.

ABSTRACT. The classical Euler characteristic y = %, of a finite complex
lies at the bottom of a sequence of homotopy invariants. The next invariant
in this sequence ¥, is introduced here and studied in some detail. The rest of
the sequence, vy, with #n > 2, will be discussed in a sequel paper. Applications
to geometric group theory are found by considering the behavior of %; on an
aspherical finite complex of fundamental group G. Just as the y(G) # 0
implies that the center of G is trivial (Gottlieb’s Theorem), it is shown here
that (under a weak additional hypothesis and using rational coefficients)
x1(G) # 0 implies that the center of G is infinite cyclic. We also find a
generalization of Gottlieb’s Theorem in which the Lefschetz number of an
automorphism of G is related to the fixed subgroup of the automorphism.

INTRODUCTION

From our point of view, the classical Euler characteristic of a finite
complex is “zero-th order”. In this paper we introduce a ““first order” analog,
a new invariant in topology and group theory. In a sequel paper and
in [GNO] we extend these ideas to an “n-th order” Euler characteristic for
all positive n.

For a finite complex X, the new invariant x, (X; R), defined in § 1, comes
in different forms, depending on the coefficient ring R; and a more
sophisticated version y;(X; R) defined in §2, involves the universal cover
of X. By contrast, the classical analogs of these are essentially the same,
namely the integer y (X). We should tell the reader from the start that all our
first order invariants are trivial if X is simply connected.
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The paper begins with three rather different definitions of y;(X; R),
a discussion of their equivalence, and some motivation for these definitions.
Our point of view is geometric, but for readers more interested in homotopy
theory we include (at the end of §1) a brief discussion of a fourth definition
in terms of stable homotopy theory.

Next, we discuss the computation of y;(X; R) for 1-complexes, certain
2-complexes, 3-dimensional lens spaces, circle bundles and mapping tori.

In §5 and § 7, we apply these ideas to group theory. Motivated by Gottlieb’s
theorem [Got] that if X is a finite aspherical complex with fundamental
group G and if 4 (G) = x(X) # 0 then the center of G is trivial, we find an
analog (Theorem 5.4) which says, roughly, that if %,(G; Q) = x,(X;Q) # 0
then the center of G is infinite cyclic. This leads us to surprising generalization
of Gottlieb’s theorem (Theorem 8.1). In this theorem, one is given an
automorphism 6 of G induced by a map f: X — X. By the Lefschetz number,
L(0), of 6 we mean the Lefschetz number of f. We prove (under a weak
K-theoretic hypothesis on G) that if 6 has order » in the group of outer
automorphisms of G and if Y/_,L(87) # 0 then the intersection of the
center of G and the fixed subgroup of 0 is trivial. We do not know of a previous
theorem which relates so directly the fixed subgroup of an automorphism to
the classical fixed point theory of the associated map.

We also introduce a more refined invariant y,(X) € H'(I', HH,(ZG))
where HH,(ZG) is the first Hochschild homology group of ZG (see §1).
This is an analog of what one obtains when one computes the classical Euler
characteristic as a Hattori-Stallings trace in the universal cover of X. In the
classical case one essentially recovers % (X), but a significant distinction
appears in the case of the ‘“higher order” invariants. In a natural manner,
%1(X) maps to y;(X) regarded as an element of H!(I', H,(G)). Applications
of 7y, to characteristic classes and Seifert fiber spaces will be given in [GN;].

The ideas presented here are an outgrowth of the one-parameter fixed point
theory developed in [GN;] and its application to dynamics in [GN,].
A summary has appeared as [GN;]. Most of this paper can be read
independently of [GN;] and [GN,]. We make modest use of a few technical
propositions from [GN;] in §2 and §3; in §10 a difficult result from [GN|]
is invoked. '

One of the definitions of y;(X; R) employs a formula introduced more
than twenty years ago in [Kn]; we thank Boris Okun for drawing our attention
to that paper.
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1. THREE DEFINITIONS OF THE FIRST ORDER EULER CHARACTERISTIC

Recall three definitions of the Euler characteristic, % (X), of a finite
complex X.

Definition Ag. %(X) = ¥ ,5,(— 1* (number of k-cells in X).

Definition By. Y%(X;R) = ¥ ,s,(— Dfrankg H¢(X; R) where R is a
principal ideal domain. (This integer is independent of R.)
When X is an oriented manifold, M, we also have:

Definition C,. x(M) = intersection number of the graph of the identity
map of M with itself.

We will introduce a higher analog called “the first order Euler charac-
teristic” of X. There will be three analogous definitions, labelled 4,, B,
and C, corresponding to the above definitions of the classical Euler
characteristic. We prove in § 10 that under appropriate hypotheses these new
definitions are equivalent.

First, we establish some notation. Let X be a finite connected CW complex
with base vertex v. Write G = n,(X,v) and T = n,(X¥,id) where XX is
the function space of all continuous maps X — X. Each y €I can be
represented by a cellular homotopy FY: X X I = X such that Fj = F] = idy.
Orient the cells of X, thus establishing a preferred basis for the integral
cellular chains (C4(X), d). Choose a lift, &, in the universal cover, )~(,
for each cell e of X, and orient ¢ compatibly with e. Regard the cellular
chain complex (Cs (5( ), 5) as a free right ZG-module chain complex with
preferred basis {e}. Let D%:Cyx(X) — Cy,(X) be the chain homotopy
induced by F7.

Sign Convention. 1If e is an oriented k-cell of X then D,(e) is the
(k + 1)-chain (= D**'Fy(exI)e Cy,(X), where e X I is given the
product orientation.

Let R be a commutative ring. Regard Rék = 5k® id: Ck(f() X R
- Cio1(X)®R and D} =D}®id:C(X) ® R~ Cy,1(X) ® R as
matrices over RG and R respectively using the preferred bases. The
abelianization homomorphism A: G — G,, = H;(X) extends to a homo-
morphism of R-modules A: RG = H{(X;R) = H{(X) ® R.

We can now state the first definition of our first order Euler charac-
teristic with coefficients in a commutative ring R. It is a homomorphism
vi(X;R):T = H(X;R). When R =7 we write, in abbreviated form,
x1(X): I = H,(X). Note that I' is abelian, and when X is aspherical,
I' = Z(G), the center of G; see Proposition 1.3.




6 R. GEOGHEGAN AND A. NICAS

Definition A;. Let R be a commutative ring of coefficients.

X1 (X5 R)(y) = kEO (= ¥+ 1A(trace(z04+12D7)) -
=

Here, we are multiplying RG-matrices by R-matrices to obtain
R G-matrices. Note that 4 (X;R)(y) = 11 (X)(y) ®1. We will show
(Corollary 2.10) that this formula is independent of the various choices that
have been made. Note that in order to know the right hand side, we must have
information at the chain level, namely the matrices Ré r+1 and gD7.
Definition A, is the ‘“reduction” of a trace in 1-dimensional Hochschild
homology; the corresponding trace (of the identity map) in O-dimensional
Hochschild homology “reduces” in the same way to Definition A,; see §2
for more on this.

Our second definition requires the assumption that H, (X; R) be a free
R-module where R is a principal ideal domain. This will be true, for
example, if R is a field. For each k >0, choose a basis {b}, ..., b} }
for Hy(X; R). Let {151’-‘} be the corresponding dual basis for H*(X; R).
Let ®7: X x S! = X be the obvious quotient obtained from FY, above.
By means of the Kiinneth formula, ®7 induces ®%: H,(X; R) ® H,(S!; R)
- H,.1(X;R). Let u € H(S'; R) be the generator which defines the usual
orientation on S'.

Definition B;. Let R be a principal ideal domain. Suppose that
H. (X;R) is a free R-module. :
X (XGR(Y) = X (=DF1 Y bin 0L(b;® u)
k=0 J
where N is the cap product in the sense of [D,].

It is straightforward to show that the formula in Definition B; is
independent of the choice of basis for Xy (X; R).

Remark. Throughout this paper we use Dold’s conventions [D,]
for cap and cup products. These conventions are the same as those
of [MS] but differ from those of [Sp]. Writing n" and u’ for the cap
and cup products of [Sp], we have x ny = (= 1)Ixldxl-1yDx A"y and
uuv=(—Dlulely U’y where ““||” denote the degree of a homology
or cohomology class.

The above expression for y;(X; R)(y) can also be written:

B _ _
VXGR(Y) = Y Y (DRI U b, L @ u))b]

i=1 k,j
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where ( -, - ) denotes the Kronecker pairing. A trace formula of this kind,
for parametrized maps X X Y — X was introduced by R.J. Knill in [Kn].
In order to know the right hand side in Definition B;, we only need
homological information about ®¥ and cup product information about
H*(X; R). The theory of [Kn] when applied to the identity map of X yields
Definition B,; hence the analogy with Definition B, (also see §10).

Our third definition, Definition C; below, is an analog of the geo-
metric Definition C, of %(X). Let M be a compact oriented smooth
(or PL) manifold with boundary. The fixed point set of F is Fix(F")
= {(x,t)| FY(x,t) = x}, i.e. the coincidence set of F* and the projec-
tion p:M x I— M. As before, we form ®7":M x S' > M. We may
perturb ®Y to a smooth (or PL) map ¥* whose image misses M and
whose graph meets the graph of the projection p transversely. Then
Fix(P*) = {(x, 1) |¥"(x,¢) = x} is a closed 1-manifold which naturally
carries the ‘““intersection orientation”, using the order (graph of p, graph
of W), as explained, for example, in [DG, §8 and §11] and [GN,, §6(A)].
This oriented 1-manifold defines an integral 1-cycle, U(y), in X X S!. The
integral homology class determined by this cycle will be called the intersection
class. If R is a commutative coefficient ring, let 6z(y) € H,;(M; R) be the
image of the homology class represented by the cycle U(y) ® 1 under
Dsx:Hy(M X S'; R) > Hi(M; R). When R = Z we write 02(y) = 0(y).

Definition C,. Let R be a commutative ring of coefficients.

X1 (M5 R)(y) = — 0z (y) .

Definitions A;, B, and C, define homomorphisms I' = H, (X; R) which
are related as follows:

THEOREM 1.1 (Equivalence).

(i) When R is a principal ideal domain and H.(X;R) is a free
R-module, Definitions A, and B, agree;

(ii) when X isan oriented manifold and R is any commutative coefficient
ring, Definitions A, and C, agree.
The proof of Theorem 1.1 is deferred until § 10 so as not to interrupt the

development of the y;-invariant. It is a technical proof, more or less
independent of everything else in the paper.

Suppose that 4: X — Y is homotopy equivalence where Y is a finite
CW complex. Let A~!': Y~ X be a homotopy inverse for 4. Then the
map h,:XX—> Y7Y given by f~hfh-! is a homotopy equivalence. In
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particular, 4, induces an isomorphism (hg)* :T'=T"=mn,(YY,id). The
assertion that %, (X; R) is a “homotopy invariant” means that the diagram:

x1(X; R)

I - H,(X; R)

(ha)se | L hy
x1(Y;R)
r’° 'S H(Y;R)
is commutative. Note that the vertical arrows are isomorphisms.

THEOREM 1.2. x,;(X; R) is a homotopy invariant.

For the proof, see Corollary 2.10. Theorem 1.2 allows us to extend the
definition of y;(X;R) to any topological space X which is homotopy
equivalent to a finite complex.

Let Z(X) C XX be the subset of self homotopy equivalences of X
and Z(X,v) C €(X) consist of those homotopy equivalences which fix v.
There is an evaluation fibration €(X,v) & £(X) % X, where nf) = f).
The homotopy exact sequence of this fibration yields the exact sequence:

1, (Z(X, 0),1d) = T 5 G = 1o(Z(X, v)) = 1o(Z(X))

where T = mn;(X¥*,id) = n;(¢(X),id) and G = mn;(X,v). The group
Z(X) =n, @) is called the Gottlieb subgroup of G. A

Gottlieb showed ([Got, Theorem 1.4]) that ¥(X) lies in the subgroup
consisting of those elements of G which act trivially on =, (X, v), for all
n > 1; in particular, ¥(X) C Z(G), the center of G. Indeed by elementary
obstruction theory one obtains (see [Got]):

PROPOSITION 1.3. If X is aspherical then <(X)= Z(G) and
Ng:T = Z(G) is an isomorphism.

In view of this, we will often identify I' with Z(G) when X is aspherical.
(The example of X = S? shows that the kernel of n,:T = (X) may be
nontrivial when X not aspherical.)

A group G is of type 7 if there exists a K(G, 1) which is a finite
complex. By Theorem 1.2, the first order Euler characteristic is a homotopy
invariant. In particular, applying these definitions to any finite K(G, 1)
complex we obtain the first order Euler characteristic of the group G
of type 7. For any commutative ring G of coefficients, it is a homo-
morphism ¥;(G; R): Z(G) = G, ® R.
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PROPOSITION 1.4. Let G be of type Z. If %(G)#0 then
v1(G; R) s trivial for any coefficient ring R.

Proof. The center, Z(G), is trivial, by [Got, Theorem IV.1]. Indeed,
a short proof of this fact is included below as Proposition 2.4. []

We end this section with the promised fourth definition of (X, R) in terms
of the transfer maps of [BG], [Ds3]. For y e I, coPsider P: X X ST-> X
as above. This defines ®7: X X S! = X X S! by ®"(x,2) = (®(x, 2), 2)
which is a fiber map with respect to the trivial fibration X - X x S! — S!.
There is an associated S-map (the transfer) T(P7): T SIJr - Y(X x SYH,.
Here, the subscript “+” indicates union with a disjoint base_point and
“Y>” denotes the suspension spectrum of a space. The S-map t(F) induces
a homomorphism in homology T(®7)4: Hy (S!; R) > Hy (X X S'; R).

THEOREM 1.5. Let R be a field. Then %, (X; R) = — psT(®7)(S']). [J
This is proved in §10.

2. DISCUSSION OF DEFINITION A;

To explain where Definition A; comes from, we must review some basic
facts about Hochschild homology. Then we show that the formula in
Definition A; is well-defined and homotopy invariant.

Let R be a commutative ground ring and let S be an associative R-algebra
with unit. If M is an S — S bimodule (i.e. a left and right S-module satisfying
(sim)s, = s(ms,) for all m e M, and s,,s, € S), the Hochschild chain
complex {C« (S, M), d} consists of C,(S, M) = S®" ® M where S®" is the
tensor product of n copies of S and

dis;® " X5, dm =5Q - Q s, ® ms,
n-1

+ Z (D1 @ @885+ 0 - ®s, Qm

i=1

(D" ® @Sy QX s,m .

The tensor products are taken over R. The n-th homology of this complex
is the n-th Hochschild homology of S with coefficient bimodule M. It is
denoted by HH,(S,M). If M =S with the standard S—S bimodule
structure then we write HH,(S) for HH, (S, M).
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We will be concerned mainly with HH, and HH, which are computed
from

> SRSOM S SOM S M
S5 R®m = 5,Qms; —s15QQm+ 5, & s,m
S@m = ms— sm

Next, we consider traces in Hochschild homology. If 4 is a square
matrix over M, we interpret its trace Y A;; as an element of M (i.e. as a
Hochschild 0-cycle). The corresponding homology class is denoted by
T9(A) e HH (S, M). If Ai,i=1,...,n, are ¢; X q;,, matrices over S
and B is a ¢g,+; X g, matrix over M, we define A!® - ® A" ® B to
be the g, X g; matrix with entries in the R-module S®” ® M given by

(Al®.'.®An®B)ij= Z;C A},k2®Ai2,k3®...®Aznakn+l®Bkn+lsj'

Kysowskng

The trace of A'® -+ ® A" ® B, written trace(A'® -+ ® A” ® B), is
Y AL, ®AL @ @A . @By, .k -

ki ko, oo kns
which we interpret as a Hochschild #z-chain. Observe that the 1-chain
trace(A ® B) is a cycle if and only if trace(4AB) = trace(BA), in which case
we denote its homology class by 7:(A ® B) e HH,(S, M). In the appli-
cation below, S will be a groupring over the ground ring R and M = S.
We will use the notation G, for the set of conjugacy classes of a group G.
The partition of G into the union of its conjugacy classes induces a
direct sum decomposition of HH,(ZG) as follows: each generating
chain c=g;,® - ® g, ¥ m can be written in canonical form as
g1® " ®g, ®g, g 'eg where we think of g=g - g.meG
as “marking” the conjugacy class C(g). All the generating chains occurring
in the boundary d(c) are easily seen to have markers in C(g) when put into
canonical form. For C € G, let C4x(ZG)c be the subgroup of C4(ZG)
generated by those generating chains whose markers lie in C. The decom-
position ZG = @ ceg,ZC as a direct sum of abelian groups determines a
decomposition of chain complexes Cyx(ZG) = Dceg,Csx(ZG)c. There
results a natural isomorphism HH.(ZG) = @ ceg, HH«(ZG)c where the
summand HH, (ZG)c corresponds to the homology classes of Hochschild
cycles marked by the elements of C. We call this summand the C-component.
Given any ZG-ZG bimodule N let N be the left ZG module whose under-
lying abelian group is N and whose left module structure is given by
gm = g-m- g~ There is a natural isomorphism HHy(ZG,N) = H, (G,N)
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which is induced from an isomorphism of the Hochschild complex to the bar
complex for computing group homology; see [I, Theorem 1.d]. The
decomposition 7G = @ce,ZC is a direct sum of left ZG modules,
inducing a direct sum decomposition H (G, Z@) = @ceg, H+ (G, ZC).
Choosing representatives gc € C we have an isomorphism of left ZG
modules ZC = Z(G/Z(gc)) where Z(h) ={ge G|h = ghg~'} denotes
the centralizer of he G. Since H.(G,Z(G/Z(g¢))) is naturally
isomorphic to Hy(Z(gc¢)), we obtain a natural isomorphism HH,(ZG)
= @cec, H«(Z(gc)); furthermore, HHy(ZG)c corresponds to the
summand H.(Z(gc)) under this identification. In  particular
HH,(ZG) = Z.G,, the free abelian group generated by the conjugacy classes,
and HH,(ZG) = @ cec,Hi1(Z(gc)), the direct sum of the abelianizations
of the centralizers. Indeed, if g ® g ~'gc is a cycle then its homology class
in HH,(ZG) corresponds to {g} € H,(Z(g¢)).

The augmentation €: ZG — Z can be viewed as a morphism of ZG-ZG
bimodules, where Z is given the trivial bimodule structure, or as a morphism
£:ZG — Z of left ZG-modules. Then there is an induced chain map
C.(2G,Z1G) 5 Cy«(2G,7Z) and a commutative diagram:

€

HH,.(2ZG,2G) - HH,(ZG,7)
w ] w |
H.(G,ZG) > H(G,Z)

where the vertical arrows are isomorphisms.
Recall the abelianization homomorphism A: ZG — G,, = H,;(X) = H,(G)
used in Definition A;.

PROPOSITION 2.1. If Y ,ci® n; € C{(ZG,Z) is a Hochschild 1-cycle
representing z € HH\(ZG,Z), where c;, € ZG and n,eZ, then
n(z) = ¥;A(c;in;) € H(G).

Proof. This follows from the fact that d: ZGRZGRZ>ZG R Z

becomes g, ® g, ® 1~ (g2 — 8182+ &) ® 1. One easily shows that the
map g ® 1~ A(g) induces pn. [

With notation as in §1 let DY Ck(X) Ck+1()~() be the lift
of D!. Write 8 = @®,98,, D= @ (- l)"“DY and I = @k(—l)kldk
(v1ewed as matrices). The chain homotopy relation becomes D8 — §Dv
=7 (1 =m4(y)~!) [Explanation: the minus sign occurs on the left because
of the sign convention built into the matrix DY; the right hand side is
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thus because the 0-end of the homotopy F?” is lifted to the identity, while
the 1-end is lifted to the covering translation corresponding to M. (y); the
inversion occurs because we have G acting on the right.]

PROPOSITION 2.2. %,(X;R)(y), as given in Definition A,, is inde-
pendent of the choice of the cellular homotopy F?Y representing v.

Proof. 1t is enough to consider the case R = Z. We must show that if
Fl=F}: X xI— Xrel X x {0,1}, with corresponding chain homotopies
DYY and D%, then A (trace(dD'7)) = A (trace (D> 7)).

There is a degree 2 chain homotopy Ek Ck(X ) — Ck+2()~( ) such that
E. .0, — 8k+2Ek = D{ L D{ .- Write E = @ (- 1)"+2Ek (viewed
as a matrix). Then Ed + 8E =D7 — DY. So trace(d ® (D! —- DY)

= dtrace(é ®0® E) is a Hochschild boundary. The desired result now
follows from Proposition 2.1. [

Direct calculation yields:
23) d(trace(® ® D)) = %(X)(1 =M, (¥) 1) .

This leads to a quick proof (translating an idea of Stallings [St]) of an
important theorem of Gottlieb [Got, Theorem IV.1]:

PROPOSITION 2.4. If y(X) # 0 then < (X) is trivial.

Proof. Since y(X) # 0, (2.3) shows that every (1 — 1, (y) ~!) represents
0 € HH,(ZG). This implies that n,(y) = 1. [ :

PROPOSITION 2.5. In the Hochschild complex, C:(2G,1G),
trace (5 X IBV) is a cycle.

Proof. If x(X) =0, use (2.3). If %(X)#0, use (2.3) and Pro-
position 2.4. []

Define the lz'ft of xl( - 7) to be the function X, (X):T - HH, (ZG) which
takes vy to T} (6 ®DY) the homology class of the cycle trace(a ®DV)
The proof of Proposition 2.2 shows that this is also independent of the choice
of FY representing 7.

There is a left action of Z(G) on HH,(ZG). At the level of chains it
is defined by

O (g® "R RIM=g® " Qg X mw-1)

where @ € Z(G). One easily checks that this action is compatible with d
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and hence makes HHy(ZG) into a left Z(G)-module. The summand
HH.(ZG)c is taken by the left action of ® isomorphically onto
the summand HH4(ZG)c,-1 where Cw-! is the conjugacy class
{go-'[ge C}.

Since n maps I into Z(G), n defines a left action of I' on Cx(ZG, 1G)
and on HH,(ZG). By considering lifts of homotopies, we clearly get:

PROPOSITION 2.6. When HH,(ZG) is regarded as a left I'-module,
X,(X) becomes a derivation; Ii.e. X,(X)(v172) = X0 (X)(y1) +
Y1 X1 (X)(v2). [

Derivations modulo inner derivations yield one-dimensional coho-
mology; in particular, X, (X) defines a cohomology class ¥(X) = [5(1(X )]
e H\(T, HH,(ZG)).

The derivation X, (X) depends on the choice of lifts e of the cells e of X
(see §1). However, we have:

PROPOSITION 2.7. Up fto inner derivations, XI(X ) is independent of
the choice of cell orientations and of the choice of lifts. Hence %,(X) isa
well-defined cohomology class.

Proof. Another choice of cell orientations and lifts to the universal cover
determines a chain complex (Cj(X), 8%) and a chain homotopy E%: C}(X)
=3 C/'<+1()~()- By the ‘““change of basis formula”, [GN;, Proposition 3.3],
we have:

T'@Q' ®EY) - Ti(d®D") = TI({UR U-'(1 —n.(y)~ 1))

where U is the change of basis matrix. Since y = T (U® U-1(1 —n,(y) 1))
is clearly an inner derivation, the conclusion follows. [

We may regard Definition A, as defining a cohomology class % ;(X)
€ H'(I', H,(G)). Clearly we have:

PROPOSITION 2.8.  Under the homomorphism induced by ey: HH,(ZG)
= H\(G), X1(X) is taken to v;(X). Thus Definition A, is independent of
the choice of lifts and y,(X) is homomorphism. [

Despite Propositions 2.2 and 2.8, the formula in Definition A, might
appear to depend on the CW structure of X. However, we have:
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THEOREM 2.9. The cohomology classes %,(X) and vy, (X) are
homotopy invariants.

Proof. Since &4 (%:1(X)) = %, (X), it is sufficient to show that ¥, (X)
is a homotopy invariant. Let X — Y be a homotopy equivalence. By making
use of mapping cylinders, we may assume without loss of generality that
X — Y is an inclusion of X into Y as a subcomplex. Choose orientations
for the cells of Y and oriented lifts of these cells to the universal cover,
Y, of Y. Let X = p~'(X) where p: Y = Y is the covering projection. Since
X & Y is a homotopy equivalence, X is the universal cover of X. Choose the
basepoint to be a vertex of X. Given y € I'' = ©,(%(Y), id), the homotopy
extension property allows one to find a self homotopy of the identity
Fr:Y X I—=Y which has the additional property that FY(X x I) C X.
Let D%:Cyx(Y)—~ Cx(Y) be the chain homotopy determined by F* and
let D% | be the restriction of D% to Cx(X). Let Cx (Y, X) be the relative
chain complex with boundary operator denoted by 9. Then D induces a
chain homotopy on this complex which we will denote by f)Zk. There is a
commutative diagram:

Ci(X) = Cu(Y) = Cu(Y,X)
DLl | DL | DY |
Ca(Y) = Cu(Y) = Cu(Y,X).
By [GN,, Proposition 3.5], we have that, in HH,(ZG):

7@ ® DY) - T,(d|®@D'|) = T1(d ® D) .

Although for a given yel', T (6* X D*) could, in principle,
be nonzero we will show that y— T, (04 ®D*) is a coboundary.
Let Cy = C*(Y, X ). Since X &Y is a homotopy equivalence, C is a
contractible chain complex. Let H*:é* - C_I* be a chain contraction.
Then D% is chain homotopic to Hyx(1 —n,.(y) ') via the chain homotopy
H.(DY% — H.(1 —m4(y)~1)). Using the given bases, we can represent )
and H as matrices over Zm;(Y). Reusing symbols, we write 3 =@,;9;,
H=®;(—1)+'H; (viewed as matrices). Then, by [GN;, Lemma 3.2],
T/(d®@DY) =Ti(d®H(l —nyu(y)~")) where H(1-m,(y)"!) is the
matrix obtained by multiplying each element of H on the right by
1 —nu(y) ' eZn(Y). Clearly, vy~ T,(0 ® H(1 =n,(y)~')) is an
inner derivation. It follows that the derivations y— T} (5 ®DY) and
vy~ T,(8 |® D"|) represent the same cohomology class.  []

COROLLARY 2.10. The formula in Definition A, is a well-defined
homotopy invariant of X. U
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3. SOME CALCULATIONS

In this section we give some computations of y;(X) and )T(_ 1 (X) which
make use of explicit cell decompositions of the universal cover, X, of X. The
simplest non-trivial example is the circle, X = S!, which is treated in (A).
In (B) we consider aspherical 2-complexes, X, arising from groups with
two generators and one defining relation. In (C), X is a 3-dimensional lens
space with odd order fundamental group; in fact, the computation there is
already implicit in [GN,, §5(B)]. In (D), X is the real projective plane.

(A) FINITE GRAPHS

A finite connected 1-complex, X, is aspherical so by Propositions 1.3
and 2.4, T = n,(4(X),id) is trivial unless X has the homotopy type
of S'. Take X to be S! with one O-cell, v, and one 1-cell, e. Then X is the
real line with the usual CW structure. Orient v by + 1 and e by u — e?™i,
Let t € T=mn,(S',v) be represented by the loop u > e —27 (this generator
of T has been chosen for compatibility with §6). Recall that we use the right

action of T, so
~ [0 r—1
q = .
0 0

The matrix DRl corresponding to positive rotation, R;:S! x I— S!,
through 27 (the first “tumble” in the language of §6) is

D[Rﬂ:[o 0 ;
1 0

note that the Sign Convention of §1 is used here. Thus Xl(Sl)([Rl])
is represented by (f—1)® 1 which is homologous to 7® 1, and
x1(S')([R;]) = {t}. Now, [R;] generates the infinite cyclic group T.
Making the standard identifications of T and T with Z (i.e. identifying [R,]
and 7~! with 1 € Z), we obtain:

Example 3.1.  y,(S'): Z — Z is multiplication by — 1.

Remark. The circle belongs to the classes of spaces considered in §4
and §6, so the methods there also apply.

(B) GROUPS WITH TWO GENERATORS AND ONE RELATION

Let X be a finite 2-complex with one vertex, v, and one 2-cell, eZ2.
We further assume that X is aspherical. By Lyndon’s theorem [Ly], this
is the case if and only if the element of the free group defined by the
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attaching map of the 2-cell is not a proper power. As in (A), the group
' = Z(n,(X,v)) is trivial unless X has two 1-cells, ei and e; (otherwise
x(X) # 0), so we assume this.

The case when X is homotopy equivalent to the 2-torus is exceptional.
The following calculation is a special case of Example 6.15. Alternatively,
the same result can be obtained by the method of Example 3.8 below.
See also Corollary 4.8.

Example 3.2. Let X be homotopy equivalent to the 2-torus. Then
x1(X) = 0. Consequently, Proposition 2.8 implies ¥, (X) = 0.

In all (aspherical) cases other than the 2-torus, I" is known to be either
trivial or infinite cyclic [Mu].

Orient v by + 1, and choose orientations for the the other cells. There
1s a corresponding presentation <{Xx;, X, ‘ ry of G=mn,(X,v), where Xx;
denotes the element of G represented by the oriented loop e;, and r is the
attaching word in {x} with respect to the chosen orientation on eZ2.
Choose lifts of the cells so that:

8,(e)y=(;— 1o and 8,(e¥)=—é&,+—e,.

We have written these in terms of the left action of G because we are using
the free differential calculus [B, p. 45] which is traditionally done in terms
of left actions. We will then convert to right actions using the involution
«:2G— 2G, Y .nigi— ¥ ng .

For vy € Z(G), there is a unique (up to homotopy) cellular homotopy
F7:idy — idx. The track of the basepoint presents y as a word in {x;°}, and

ox, 0Xx,

There are 6, 6, € ZG such that b’{(’é,-) = ¢;e 2. Thus the relevant matrices
are:

( . )*— ( = )*

1_1x2—1_1], 622 0, ’ [)0= ox
or\* ay \*
(BXZ) - (8)(2)

61 = [x1_

and 131 = [of o¥]. So XI(X) (v) is represented by the chain:

1 ﬁ * _ai * *]
oo (2) () s ]

2

(3.3) trace(d ® D) = Y.

i=1
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By Proposition 2.1, this implies:

2 Ay ar
X)) () = X _S(E—)A(xi)-g(ci)A (a_)]

i=1 Xi i
where ¢: ZG — Z is augmentation. For any g € G represented by the word w
ow

in {x*}, A(g) = Li_¢ (6 )A(xj). Substituting, we get:

J
or

xjaxi

LX) ()= A - X 8(01')5(

1<i,j<2

)A(Xj) .

The fact that D3 — dD = I~(1 —n,(y) 1) yields six equations in ZG. It 1s
straightforward to check that when € is applied to these they reduce to:

) or
LEMMA 3.4. Forall 1<i,j<2,¢e(o;)¢e (8_) =0. [

Xj

0 0
The chain complex Cy(X) is Z 37 ® Z — Z where

8,(1) [ ar or ]
=lel—1), e|—
’ dx1 9
and 8, =0. If H,(X)=0 then 8, #0, and by Lemma 3.4, &(o;)
= g(0,) = 0. Hence:

PROPOSITION 3.5. If H,(X)=0 then % (X)=—-A. [

If H,(X) # 0 then 9, = 0. In this case we may regard A (x;) and A4 (x;)

as a basis for the free abelian group G,,. Writing H(r) for the Fox Hessian
2r

matrix of r, namely H(r)ijzs( ),and H(r)! for its transpose

ax; ij
we have:

PROPOSITION 3.6. If H,y(X) # 0 then

A(xy)

.
A(x2)

1 (X) (v) = —A(y) — [e(o1) 8(02)]H(r)’[
The matrix H(r) can be computed once we are given the relation r.
The integers €(c;) and €(o;) depend on vy; in general, they are hard to

compute although we will do so in some special cases (see Examples 3.8
and 3.9 below).
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The matrix H(r) is determined by the cup product H!(X) ® H!(X)
- H?2(X):

PROPOSITION 3.7. Assume Hy(X) #0. Let {A(x)),A(x;)} be the
dual basis for H'(X). Then H(r); = (A(x;) v A(x))) ([e2]); hence:

1 X) ()= —A®) - (AG) UA(x) ([e2]) (e(o1)A(x,) — e(02) A (xy))

Proof. This is the same formula given by Definition B, (note that
H., (X) is free abelian and so Definition B; applies to integral coefficients).
A direct proof of Proposition 3.7 is also possible. [

Example 3.8. G = (x;,x, | x;x7'x5'x;™y, m > 2. Here, Z(G) is gene-

or
rated by x{', and H,(X) # 0. One calculates: o = (x, - D) L) X,
X1

—=1-x",— =¥, x, v _ 0, 6,=0 and o,=1. (Actually,
0x, 0x, 0x,

one sees these values for the sigmas intuitively and then one checks that the
resulting D gives the right answer.) Thus 5(1(X ) (x7') is represented by the
cycle (x;'-D® X", x1 + (1 —x‘m) ® 1 which is homologous to
the canonical form: x; ' ®x; (L7 'x/H)+x" ' @x7" Vx ™ It
follows that (see §2) X,(X)(x7)e HH,(ZG)= @ ceo, Hi(Z(gc))
has [x;']-summand —{x;} € H,(Z(x;"), for 1<i<m -1, and
[x; "]-summand (m — 1){x,} € H;(G) = G,; here, [g] denotes the con-
jugacy class of g. By Proposition 2.1 (or 3.6), %;(X)(x{) = 0. It is not
difficult to see that X, (X) is not an inner derivation. In particular, the first
order Euler characteristic is zero, while %;(X) # 0.

EXAMPLE 3.9. G = {x,, X, |x['x}y, m # 0 and n # 0. (If m and n are
relatively prime, then G is the group of the (m, — n) torus knot.) Here, Z(G)
is generated by x" = x5 ", and H,(X) = 0. By Proposition 3.5, x; (X) (x])
= —mA(x;) = nA(x;). It is also of interest to calculate X,(X)(x7).
We get({ja—):1 =y txl, -86;2 =x] Y4 x5, :}Z = yrtx, :—)ZZ =0,6,=0
and o, = xz — 1. Thus X,(X) (x{") is represented by the cycle (x;'=1)
@ T x + (X020 x, )x{ " ® (x; ' — 1) which is homologous to the
canonical form:

n-1

; -1 —m=1) -
Z (Xl X x1x, )+ E (x2®x2 x3) + x7 ®x1(m )xlm

+x2®x2"
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(C) LENS SPACES

Let (p,q) be a pair of relatively prime positive integers with p > 1.
The lens space L(p, q) is the orbit space of the action of the cyclic group
Z/p = {x|x? = 1) on the 3-sphere S* = {(z0,21) € C2||zo|?> + |21 |2 =1}
defined by x(z0, z1) = (e2™/? 7y, e*™9/7z;). The point in L(p, q) determined
by the orbit of (z0,z;) € S* will be denoted [z¢, z1].

For any pair of integers (m, n) such that m = n mod p define a smooth S
action v, ,: S' X L(p, )~ L(p, q) by e?™®[z,,7,] = [e?™0m/P 7y, 27019/ 2,].
These actions represent elements of I' = n,(Z(L(p, q)), id).

The group HH,(Z[Z/p]) is isomorphic to a direct sum of p copies
of Z/p; furthermore, the Hochschild 1-cycles {x @ x~1~%|k =0, ...,p — 1}
project to a set of generators for HH,(Z[Z/p]). Define ¢;,d; € Z for 0 < i
<p-1lbym—-i-1=(;—D)p+bjand ng—i—1=(d;,—1)p+ b
where 0 < b;, b/ < p — 1. Let s = cx—; + rdxg-1, where the indices are
interpreted mod p and rqg = 1 mod p.

There is a natural cell structure on the universal cover, S3, of L(p, q)
(see [GNy, §5(B)]). Using this cell structure, [GN;, Lemma 5.3] asserts:

PROPOSITION 3.10. X;(L(p,q)) ([Ym.n)) € HH,(Z[Z/p]) is repre-
sented by the Hochschild cycle — Y?_ syx @ x— 1% [

Remark. We take this opportunity to correct some inadvertently
omitted minus signs from the computed examples in [GN,, §5]. In
order to conform with our Sign Convention (see §1) used both here
and in [GN,], the various chain homotopies D appearing in the explicit
computations of [GN;, §5] should be replaced by ~D. Consequently,
in [GN,, Lemma 5.3], [GN,, Proposition 5.4] and [GN,, Corollary 5.5]
B(Ym,n)s R(Ym, ) and L(yn,,) should be replaced by — B (v, »), — R(Ym,»)
and — L(yn, ,) respectively. Similarly, R(F,) should be replaced by
— R(F,) in [GN,, Theorem 5.1] and R(®,) should be replaced by — R(®,)
in [GN,, §5(C)].

The homomorphism e: HH,(Z[Z/p]) » H,(Z/p) takes the generators

{x ® x~17%} to the same generator, a, of H,(Z/p). From the proof of
[GN,, Corollary 5.5], we deduce:

PrROPOSITION 3.11. %, (L(p, @) ([Ym.2)) = — (m + n)a. [

If p is odd then Propositions 3.10 and 3.11 give complete computations
of %1 (L(p, q)) and x,(L(p, q)) respectively because the [Ym, n]’s generate T;
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indeed by [GN,, Proposition 5.7], for odd p, T is cyclic of order 2p?. The
proof there also shows that 2[y, ;] is of order p? and that p[y,, ,] is of
order 2 in I', so [y, .. ,2] generates I'.

(D) THE PROJECTIVE PLANE

We saw that when X is aspherical and y(X) # 0 then I' = 0 and so our
first order invariants vanish. In the presence of non-trivial higher homotopy
these invariants need not vanish, despite % (X) # 0, as demonstrated by the
example of the real projective plane X = P2.

Write G = nn;(P?) = Z/2; denote the generator of G by ¢. Give P2
the customary cell structure consisting of one cell in each of dimen-
sions 0, 1, and 2. The universal cover P2 is naturally identified with S? and
the corresponding cellular chain complex is:

1+¢-1 r—1—1
C2(S?) = Ci(SH) — Co(SY) .
Every element of I' can be represented by a basepoint preserving
homotopy F:P2?x I— P2 with F, = F, = idp.. We have F, = F, = ids
because the basepoint is preserved. It is easy to verify that the corres-
ponding chain homotopy ﬁ*;c*(gz)_) C«(S?) is then zero on Cy(S?)
and takes e; to e,m(l1 —¢-!') where m € Z. By elementary obstruc-
tion theory, there exists F = F(" realizing any m e Z. In this case
trace(é & [)) ={1+¢t")Y®mA~-1¢t"1) which is homologous to the
canonical form mt- '@ tt-!' —mt-1®¢r=2. Since yP?*) =1=%0,
the Gottlieb group M, () = Z(P2) = 0 and so the derivation X 1(P?) is a
homomorphism and need not be distinguished from its cohomology class
Yi(P?) e H(I',HH,(Z(Z/2))) = Hom(T', HH,(Z(Z/2))). It follows that

(P (Fm) =(m, —m)eZ/2®Z/2=HH (Z(Z/2)) .

In particular, when m is odd %, (P2?) ([F]) # 0. On the other hand, this
shows y;(P?) = 0.

4. S'-FIBRATIONS

In this section we investigate the first order Euler characteristic of the
total space of an orientable Serre fibration with S!-fiber.

Let S! > X > B be an orientable Serre fibration where B is a (not
necessarily finite) connected CW complex and X has the homotopy type
of a finite complex. By classical obstruction theory, fiber homotopy
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equivalence classes of orientable S!-fibrations over a CW complex B
are classified by the integral cohomology group H2*(B;Z). Given an
element e € H2(B;Z) = [B,CP*] one obtains a principal U(1)-bundle
over B by pulling back, via a continuous map B — CP> representing e,
the U(1)-bundle associated to the canonical complex line bundle over the
infinite dimensional complex projective space CP=. Thus we can assume,
without loss of generality, that S! =X % B is a principal U(1)-bundle.
In particular, there is a free U(1)-action on X which we will write
as ®: X x S!—> X. Let t el =m,(4(X),1) be the element represented
by ® (® = ®° in the notation of §1). For any coefficient ring R,
let {r} € H,(X; R) denote the image of T under the composite:

5 (X)— H(X)—~ H(X;R) .

Also, let er be the image of the element e € H?(B;Z) which classifies
S!'— X 5 B under the homomorphism H2(B; Z) = H*(B; R).

LEMMA 4.1. If F isa field, then {t} e H,(X;F¥) is non-zero if and
only if ep = 0.

Proof. Consider the Gysin homology sequence for the fibration
S!— X5 B:

e N

. 0 n
+ > H,(B;F) = Ho(B;F) = H,(X; F) S H{(B; F) > 0 .

FMN

Since H,(B; F) e—> Hy(B;F)=F is just evaluation of the cohomology
class ey on homology, 0, is non-zero if and only if eg = 0. Let v € X be a
basepoint and let {n(v)} € Hy(B; F) be the generator determined by the
inclusion of w(v) into B. The fact that 6,({v}) = {t} follows from the
naturality of the Gysin sequence homology sequence, by mapping the Gysin
sequence of the trivial fibration S!— S!— n(v), via the homomorphism
induced by inclusion, into the Gysin sequence for S! > X > B. [

THEOREM 4.2. Let ¥ be a field. If ey #0 then x,(X;F) (1) =0.
If exr =0 then H.(B;F) is finite dimensional over F and vy,(X;F) (1)
= —x(B;F) {t} where x(B;F)= Y, ,(— 1) dimsH;(B;F).

Proof. In this proof, all homology and cohomology groups will have

coefficients in the field F. Since B is the orbit space of the U(1)-action
on X given by ®, there is a commutative square:

xXxSs 3 x

nxidl nl

BxS' 5 B
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where p: B X S! — B is projection. This square induces a commutative ladder

mapping the Gysin homology sequence of S! = X x S! "54B % S! to the
Gysin homology sequence of S! = X = B:
, (n x id)
H/BxS') % H. (XxS) =" H.,(BxS) - H_(BxS)
Py | @y | Py | Pyl
H@B) > H.,X) 2  H.® 5 H_®

For each integer 0 < i < dim X choose a basis {5, ..., by } for H;(X) such
that for some integer m; < Bi{bjmﬂ, oo é,—} is a basis for the kernel of
nyw: H;(X) = H;(B). The corresponding dual basis for H/(X) will be
denoted by {b', ...,l;éi}. Since we are using coefficients in a field, we
make the identifications H,(B X S!) = H,(B) ® H.(S!) and H.(X X S!)
= H.(X) ® Hy«(S') via the natural isomorphism given by the homology
exterior product. Let u € H,(S') be the generator determined by the

standard orientation of S!. Using Definition B;,

Bk
LXH (=Y (D' Y bEnabf®u).

k>0 j=1
Consider bj- @ ue H; (XxS8!) where m; + 1 <Jj < B;. Since bj- lies in
ker 4, the exactness of the Gysin sequence implies that b J' RKu=0"(c®u)
for some ¢ € H;(B). Consequently,

D, (b;®@u) =0, (0 (c®u) =0(ps(c®u)) =0
because ps(c @ u) = 0. It follows that

n _
(4.3) LG (D= Y (DY bin 0y (b ®u) .
k>0 j=1
For each k, the set {n*(b’f), ...,n*(bﬁk)} is a basis for the image of
ns: Hy(X) = H,(B). Extend this set (in any manner) to basis for H,(B) and
let {m4(b%), ..., ms(b% )} denote the corresponding portion of the dual
basis for H*(B). Then b} = n*(n4(b¥)),0<j< m,. Consider the
commutative diagram:
HBxSY) "5 Hekx x S
p* T (I)* T

H*(B) 5 HY(X) .
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Then, for 0 < j < my,
bY@y (b @ u) = @4 (O* (D)) N (b @ u)
= @, (@*(n* (n4 (bD))) N (b ® u))

= @, ((n x id)* (p* (n« (D)) N (b} @ u))
using the above diagram

=0, (b} ® 1) N (0] @ u)
=0, ((bf n b)) ®u) = ®x ({0} @ u) = {1}

where {v} is the natural generator of Hy(X) determined by the inclusion of
the basepoint v into X. From the proof of Lemma 4.1, ®, ({v} ® u) = {7}.
Substituting the above computation into Formula 4.3 yields ¥ (X; F) (1)
= (Tiso(—D¥*tmy) {t}. If e # 0 then Lemma 4.1 implies that {t} =0
and so y,(X;F) (1) = 0. Thus the conclusion of the theorem is valid in this
case. If er = 0 then from the portion

e M

Ho(X) = He(B) ™S Hi_,(B)

of the Gysin homology sequence we deduce that 7, is onto and consequently
my = dimg H; (B, F). Thus dimg Hy (B, F) is finite and Y, (= D) *1my
= —yB;F. U

Theorem 4.2 can be used to recalculate y; (X; F) in Examples 3.8 and 3.9.

Next, we consider integer coefficients. Suppose that S! > X > B is a
smooth orientable U(1)-bundle over a smooth, closed, oriented manifold B.
Let A be the one dimensional subbundle of the tangent bundle of X consisting
of vectors which are tangent to the circle fibers and let be v be a complementary
bundle to A. Then v = n*(Tp) where T is the tangent bundle of B.
Let [B] € H,(B; Z) be the fundamental class of B where n = dim B. The
Euler class, Eul(v) € H"(X; Z), is given by

Eul(v) = Eul(n*(T5)) = n*(Bul(T3)) = x(B)n*([B]*)

where [B]* € H"(B;Z) is the generator determined by the condition
[B1*([B]) = 1; see [MS, Corollary 11.12]. The Gysin homology sequence
for S' > X 5 B determines a fundamental class for X ; (X1e H, (X)) is
the image of [B] under the homomorphism 0,: H,(B;Z) = H,. (X; Z).
For any closed oriented m-dimensional manifold M, let PD,: H (M)
— H,_;(M) be the Poincaré duality isomorphism explicitly given by
PDuy(x) = (= 1)!"=9x n [M] where x € H'(M) and [M] € H,,(M) is the
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fundamental class ((— 1)/0"-9 appears because of our use of Dold’s sign
conventions). An immediate consequence of Theorem 3.1 of [GN,] is the
following computation of %, (X) (with integer coefficients):

THEOREM 4.4. y,(X) (1) = — PDy(Eul(v)). [

THEOREM 4.5. Under the above hypotheses, 7y;(X) (1) = —x(B) {1}.

Proof. There is a Poincaré duality isomorphism between the Gysin
homology sequence and the Gysin cohomology sequence, a portion of which
is shown below:

b T

Ho(B;Z) - H,(X;Z) - H(B;Z)

PDg 1 PDx 1 PDp |

T*

Hr"B:;Z) S Hr(X;Z) - H"(B;Z)

Let v € X be a basepoint, and let {n(v)} € Hy(B;Z) be the generator
determined by the inclusion of m(v) into B. From the above diagram,
PDx(n*([B1*)) = 0,({n(v)}). Also, from the proof of Lemma 4.1,
Bo({m(v)}) = {t}. Thus PDx(Eul(v)) = x(B){t}. Regarding the free
U(1)-action on X as a flow, we can now invoke Theorem 4.4 to conclude
that x(B) {t} = — 1 (X)(v). I

Example 4.6. Let ¥, be a closed oriented surface of genus g > 1 and
let L, be a complex line bundle over Y, with Chern number n. Let M, ,
be the total space of the U(l)-bundle associated to L,. Then M, , is a
closed oriented aspherical 3-manifold which fibers over } ,. The center of
n,(M, ,) is the infinite cyclic group generated by t (represented by a
circle fiber); the image, {t}, of T in H,(M,, ,) = Z?*¢ ® Z/n generates the
Z/n summand. By Theorem 4.5, %, (M, ,):Z— H,(M,,,) is given by
0 (M) (1) = g — 2) {1} |

Let T, where n > 1, be the n-torus (i.e. the n-fold product of copies
of U(1)). Let X be a closed oriented smooth manifold and let p: 7" X X = X
be a smooth free action of 7. This action defines a homomorphism
p: T"— Diff (X) where Diff(X) is the diffeomorphism group of X.
Let Iy C I' be the image of the composite:

7 (T7, 1) 3 1, (Diff (X), id) - 7, (%(X),id) = T .

PROPOSITION 4.7. The restriction of x,(X): I = H,(X) to T, is
the zero homomorphism.
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Proof. Since n > 1, if T C T” is a circle subgroup then v(X/T) =0.
Applying Theorem 4.5 to the bundle T—->X—X/T yields the con-
clusion. [

COROLLARY 4.8. If n>1 then x,(T"):Z"—Z" iszero. [

5. A HIGHER ANALOG OF GOTTLIEB’S THEOREM

Let G be a group of type .7. Gottlieb’s theorem (see Propositions 1.3
and 2.4) asserts that if 1 (G) # 0 then Z(G), the center of G, is trivial. We
prove an analogous theorem for yx,(G; Q): if x:(G; Q) # O then the center
of Gis infinite cyclic provided G satisfies an extra hypothesis (explained below)
related to the Bass Conjecture; see Proposition 5.2 and Theorem 5.4.

Throughout this section R will be a commutative ground ring. Let S be
any associative R-algebra with unit. The Hochschild homology group
HH,(S) is the R-module S/[S, S] where [S, S] is the R-submodule of §
generated by {ab — ba|a, b € S}; see §2. Recall that Ko(S) is the abelian
group F/A where F is the free abelian group generated by the set of
all isomorphism classes [M] of finitely generated projective right S-modules
M C @7, S and A is the subgroup of F generated by relations of the form
M, ® M,] — [M,] — [M,]. Since a finitely generated projective module is
the image of a finitely generated free module under an idempotent homo-
morphism, each element of K,(S) can be represented by an idempotent
matrix over S. The Hattori-Stallings trace Ty: Ko(S) > HH(S) is defined
as follows. Let A: M — M be an idempotent endomorphism of a free, finitely
generated right S-module M representing x € Ky(S). If [A] is the matrix
of A with respect to a given basis for M then T,(x) is defined to be
To([A]) € HH,(S).

Consider the groupring, RG, of a group G over R. Then HH,(RG)
is naturally isomorphic to the free R-module generated by G;, the set
of conjugacy classes of G (see §2 for an explanation in the case R = Z).
Recall that for g € G we write C(g) € G, for the conjugacy class of g,
HHy(RG)cy for the summand of HH (RG) corresponding to C(g)
and xc¢(,) for the C(g)-component of x € HH,(RG). Also write HHy(RG)
= HHy(RG)cy ® HHy(RG)" where 1 € G is the identity element of G,
and HH,(RG)" is the direct sum of the remaining summands. The
augmentation homomorphism €:RG — R induces a homomorphism
ex: HHy(RG) > HH,(R) = R.
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STRONG BASs PROPERTY. We say that the group G has the Strong Bass
Property over R, abbreviated to “SBP over R”, if the image of the homo-
morphism Ty: Ko(RG) = HH(RG) lies in the HH(RG) ¢(;) summand.

WEAK BASS PROPERTY. We say that the group G has the Weak Bass
Property over R, abbreviated to “WBP over R”, if the composite

projection

T €x
Ko(RG) = HH,(RG) HH,(RG)' > R

is zero.

Clearly, if G has the SBP over R then it also has WBP over R. There are
well-known conjectures concerning the SBP and the WBP (see [Bass], [DV]
and [St, §4.1]):

STRONG BASS CONJECTURE. Every group has the SBP over Z.

WEAK BASS CONJECTURE. Every group has the WBP over Z.

The corresponding conjectures are false over Q for a group which has
nontrivial torsion; instead, one could conjecture:

STRONG BASS CONJECTURE OVER Q. Every torsion free group has the SBP
over Q.

WEAK BASS CONJECTURE OVER Q. Every torsion free group has the WBP
over Q.

Each element of the center of G, Z(G), makes up its own conjugacy class.
Given a subgroup N of Z(G), let HHy(RG)n = @ c(eyecovy HHo(RG) c(y)
where c(/N) is the set of conjugacy classes in G represented by elements
of N. Then HHy(RG) = HHy(RG)y ® HH,(RG),, where HHy(RG)} is
the direct sum of the summands corresponding to the conjugacy classes
not in c(V).

PrROPERTY C. We say that the group G has Property C over R if there exists
a non-empty subset N of Z(G) such that the composite

projection

T Lo
KO(RG)—(:HHO(RG) HH,(RG)y— R

1S zero.
By taking N to be the trivial subgroup of Z(G) we see that if G has the
WBP over R then it also has Property C over R.
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Recall that a group G is said to have finite cohomological dimension over
the commutative ground ring R if there exists an integer N such that
H*(G, M) = 0 for all RG-modules M and for all k¥ > N. Also, G is said to
be of type FP,, over R if the trivial RG-module R has a resolution by finitely
generated projective RG-modules.

The following proposition is derived from the techniques of [St, §3].

PROPOSITION 5.1. Let R be a principal ideal domain of characteristic
p > 0. Supposethat G isoftype FP. over R and has finite cohomo-
logical dimension over R. Suppose also that G has a subgroup H of
finite index which has Property C over R; furthermore, if p >0 assume
that p does not divide |[G:H). If the Euler characteristic ¥ (G;R)
Yiso(—1irankg H;(G,R) is non-zero modulo p then the center
of G is finite.

Il

Proof. Since H is of finite index in G, H is also of type FP, over R
([Bi, Proposition 2.5]) and has finite cohomological dimension over R
([Bi, Corollary 5.10]). Furthermore, ¥(H;R) =[G:H]x(G;R) and so
v (H; R) # 0 mod p.

We show that the center of H, Z(H), is finite. It then follows that
the center of G, Z(G), is finite because there is an exact sequence
1> Z(G)n H—> Z(G) > Ng(H)/H, where Ng(H) is the normalizer
of H in G, and the groups Ngs(H)/H and Z(G) n H C Z(H) are finite.

Since H is of type FP, over R and has finite cohomological dimension
over R, it follows that R has a finite resolution, 0 > P, — -+ = P,
— R — 0, where each P; is a finitely generated projective RH-module
(combine [Bi, Proposition 4.1(b)] and [Bi, Proposition 1.5])). Lete: RH — R
be the augmentation homomorphism. Consider the commutative square:

Ty

K,(RH) —  HH,(RH)
€y l Ex l

T,

Ko(R) — HHy(R)=R

Let a=7Y,.0(-D"[P] € Ko(RH). Then e4(To(w)) = To(ex(a))
= x(H;R) -1 where 1 € R is the unity in R. The second equality is
the classical Hopf trace formula over the principal ideal domain R.
(Stallings ([St]) calls To(a) € HHy(RH) the Euler characteristic of the
projective RH-complex P, .) Since H is assumed to have Property C over R,
there is a non-empty subset NV of Z(H) such that g4 (Tp(a)) = &4 (To(a)n).
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Since ¥(H;R) #0 mod p, it follows that Ty(a)cwu #0 for some
heNCZ(H). Recall that the group Z(H) acts on HH,(RH) by
(rC(h))®w = rC(ho-') where reR, heH, and oeZ(#H). By
[St, Theorem 3.4] (compare (2.3) above), Ty(a)w = Ty(a) for all w € Z(H).
Since an element of HH,(RH) is a finite linear combination of conjugacy
classes, it follows that the condition To(a)cpy # 0 with A as above is
impossible unless Z(H) is finite. [

We will be interested in groups with the property that certain of their
central quotients have Property C “virtually”:

PROPERTY D. Let p > 0 be the characteristic of R. We say that the
group G has Property D over R if the following condition holds. Given
any element t in the center of G with the property that the extension
class egx € H>(G/{t);R) is zero (where (1) is the cyclic subgroup
generated by 1), there is a finite index subgroup H C G/{71) such that H
has Property C over R; moreover, if p > 0 we require that p does not
divide [G : H].

The next Proposition is our ‘“‘higher” analog of Gottlieb’s theorem over
a field of arbitrary characteristic; Theorem 5.4, below, is a more usable
version over Q.

PROPOSITION 5.2. Let F be a field. Suppose G is a group of
type & such that G has Property D over F. If %.(G;F)#0, then
the center of G s infinite cyclic.

Proof. Let T be any element in Z(G), the center of G, such that
v1(G; F) (1) # 0. Since G is necessarily torsion free, the group 7 = (1) 1is
infinite cyclic. By [Bi, Proposition 2.7] G/T is of type FP, over Z (and
hence over any commutative ring). Since T is central, the Serre fibration
S'= K(T,1) > K(G,1) > K(G/T,1) is orientable. By Theorem 4.2,
er = 0e€ H*(G/T;F), and x(G/T;F) exists and is non-zero mod p where
p = 0 is the characteristic of F. Consider the following portion of the
cohomology Gysin sequence of the fibration S!'— K(G, 1) > K(G/T, 1),
with coefficients in an arbitrary FG/T-module M:

Hi-2(G/T; M) = HI(G/T: M)~ H(G; M) .

Since ey = 0, H(G/T; M) > H(G; M) is injective and so H (G/T,M) =0
for i > dim X where X is a finite complex homotopy equivalent to K(G, 1).
In particular, Proposition 5.1 applies to G/ T and so the center of G/ T is




HIGHER EULER CHARACTERISTICS (I) 29

finite. Since the image of Z(G) in G/T is central, it follows that Z (G) is
an extension of 7 by a finite group. Thus Z(G) is infinite cyclic since G
is torsion free. [

Property D may be hard to verify for an arbitrary coefficient ring R.
However, when R = Q we have:

PROPOSITION 5.3. Let G be a finitely generated group which has the
WBP over Q. Then G has Property D over Q.

Proof. Suppose T € Z(G) is such that the extension class eq € H?(G/T; Q)
is zero where T is the cyclic subgroup of G generated by t. Consider the
following portion of the long exact sequence in cohomology associated to
the short exact sequence of coefficients, 0 > Z 5 Q—-Q/Z~-0:

HYG/T;Q/Z) > H*(G/T;Z) > H>(G/T: Q) .

By exactness, j«(ez) = eq = 0 implies ez = §(u) for some u € H'(G/T, Q/Z).
Let I = ker(u) where we regard u as an element of Hom(G/T, Q/Z)
= H'(G/T,Q/Z). Since G is finitely generated, H & G/T is of finite
index. Let H' = n -1 (H) where n: G — G/ T is the quotient homomorphism.
Then H' is isomorphic to H X T because i*(ez) = 0. In particular, H is
isomorphic to a subgroup of G. Let p: H— G be a monomorphism. The
commutative diagram

Ko(QH) = HH,(QH)
ne | |
K,(QG) = HH,(QG)

and the observation that p«(HHo(QH))cu) C HHy(QG)cy and
u« (HHy(QH)') C HH,(QG)’ imply that H has the WBP over Q (and
thus Property C over Q). [

Combining Propositions 5.2 and 5.3 we get:

THEOREM 5.4. Suppose that G is a group of type ¥ and has the

WBP over Q. If x:1(G;Q)#0, then the center of G is infinite
cyclic. [

Groups of type .# are a very special class of torsion free groups; one would
hope that all groups of type .# have the WBP over Q. There are special classes

of groups of type . which are known to have the WBP over Q. We recall
two such classes.
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A group G is a linear group if it is a subgroup of GL(n, K) where K
is a field of characteristic zero. Bass [Bass, Theorem 9.6] proved that a torsion
free linear group has the SBP over C (and thus has the WBP over Q);
also see [Eck].

COROLLARY 5.5. Suppose G is a linear group of type . If
v1(G; Q) # 0, then the center of G is infinite cyclic. ]

Eckmann [Eck] proved that a group of cohomological dimension 2
over Q has the SBP over Q. Consequently:

COROLLARY 5.6. Suppose G is of type & and has cohomological
dimension 2 over Q. If v%,(G;Q) # 0, then the center of G is infinite
cyclic. U]

There is a sense in which we can say that y;(G; Q) is an integer. Denote
the composite homomorphism Z(G) < G 4 H,(G;Z)—- H,(G;Q) by
Aq: Z(G) — H,(G; Q).

THEOREM 5.7. Let G be a group of type ¥ which has the WBP
over Q. Then there exists an integer ng (depending only on G) such
that %:1(G; Q) = ngAq-

Proof. If x,(G; Q) = 0 take ng = 0. If x;(G; Q) # 0 then by Theorem 5.4
the center of G is infinite cyclic. Let t € Z(G) generate Z(G). Since
x1(G; Q) # 0 we have %;(G;Q)(t) # 0. By Theorem 4.2, %;(G; Q) (1)
= —x(G/<{t); Q){t}. Then for any integer r: %1 (G; Q) (t") = ry,(G; Q) (1)
= —ry(G/<1); Q) {t} = —x(G/{1); Q) Aq(t"). Thus %:(G;Q) = ngAq
with ng = — ¢ (G/{1); Q). [

Remarks.

1. All integers occur as ng for some G. Given n € Z, there is a group H
of type . with y(H) = — n (e.g. take H to be an appropriate Cartesian pro-
duct of free groups). Let G = H X T where T is infinite cyclic. Clearly,
Y (G/{t);Q) =y(H) where Tt is a generator of (1) X TC G and so
x1(G; Q) = nAg (alternatively, see Example 6.15).

2. Theorem 5.7 remains true without the hypothesis that G has the WBP
over Q although the proof is considerably more lengthy. To prove this
strengthened result, one shows that for any group G of type % :
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(@) The restriction of ¥,(G; Q) to Z(G) N [G, G1] is zero.
(b) If %:(G; Q) # 0 then dimoAq(Z(G)) = 1.
The desired conclusion follows easily from (a), (b) and Theorem 4.2.
Theorem 5.7 raises the question: For what groups G of type F s
v1(G, Q) # 0? We give a necessary condition. Recall that a group H has type
F G if there is a finitely dominated K(H, 1) (i.e. K(H, 1) is a homotopy
retract of a finite complex).

PROPOSITION 5.8. If %:(G,Q)#0 then G is isomorphic to a
semidirect product (H,t|tht='=0(h) for all heH) where H
has type ¥ 9.

Proof. Let T € Z(G) be such that y;(G, Q) (1) # 0. By Theorem 4.2,
it follows that {t} € H,(G) = Gy, is of infinite order. Thus there is an
epimorphism p: G — Z with p(t) = n for some n > 0. Let H = ker(p).
Since T € Z(G), p~'(nZ) = H X Z and has finite index in G. Thus H X Z
has type .7 and so H has type .¥ 2. [l

Thus it is worthwhile to compute %, (G, Q) in terms of such a semidirect
product structure. The geometric problem underlying this is the study of
v1(X) where X is a mapping torus. We study this next, returning to the
group theoretic case in §7.

6. MAPPING TORI

In this section, we consider %;(X) and y;(X) when X is the mapping
torus of a map f: Z — Z. The main results are Theorems 6.3, 6.13, 6.14, 6.16
and Corollary 6.18. Applications to the aspherical case will be given in §7.

Suppose Z is a path connected space and has a basepoint v € Z. Given
a continuous map f:Z — Z, its mapping torus, denoted by T(Z, f), is
the space obtained from Z X [0, 1] by identifying (z, 1) with (f(z), 0) for
each z € Z. The image of (z,u) e Z X [0,1] in T(Z, f) will be denoted
by [z, u]. Choose a basepath ¢ from v to f(v) and let 6: H — H be the
self homomorphism of H = n,(Z,v) determined by f and o.

Let X =T(Z,f). Choose w=[v,0] as a basepoint for X and let
G = m,(X, w). There is a canonical map of X to the standard circle S!
(realized as complex numbers of unit modulus) given by: p;: X — S!,
pr(z,s]) = e?™is. Let i: Z & X be the inclusion z = [z, 0].
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Recall that T’ = 7, (%(X),id). Let I'si = n;(Z(S!),id). Let y:I—> X
be the path y(u) = [v, u] and let yo: I = X be the path vy, =vy(io o) !.
Define a continuous map P: XX — (S1)S' by P(g)(e?™*) = p;(g(yo(n))).
Then P induces a homomorphism Py : I — I'si. We define an identification
I'si 57 by sending the generator [s— (e2™¥ > e2mu+s))] e T's1 to 1 € Z.
The rotation degree of y € I' is the integer Py ().

We now describe some useful homotopies of X.

For a non-negative integer k, the k-th tumble is the homotopy
which “rolls the mapping torus through an angle of 2mk”; explicitly,
this homotopy, denoted by R,: X x [0,1] = X, is given by the formula
Ri([z,ul,s) = [fUks+ul(z), (ks + u) mod 1] where [ks+ u] is the integer
part of ks + u.

Whenever a map g: Z — Z commutes with f (i.e. fg = gf), there is an
induced “level” map g: X — X given by g([z, u]) = [g(z), u]; for example,
the k-th tumble, R, is a homotopy from idy to f k. We need a more general
procedure (see Proposition 6.2 below) for extending homotopies of Z to
homotopies of X.

A homotopy N:Z x I— Z eventually commutes with f if there
exists an integer m > 0 and a homotopy J:Z X I X I = Z with J(z, u, 0)
= fmoN(f(z),u),J(z,u,1) = fm+1 o N(z,u), J(z,0,5) = f" o N(f(2),0),
J(z,1,8) = fm o N(f(z), 1). Thus J makes the following diagram commute
up to homotopy rel Z x {0, 1} x I:

fxid N
ZxI > ZxI — Z
6.1) Iy L
m+1
z 5 Z = Z

This implies f” o N;o f = fm*+*1 o N; for i = 0,1; in our applications, N,
and N,; will be iterates of f.

a7 4= F
N
T i NP
\ N o
I ~
s=1
I’f(ﬂ{r@
VA VA

FIGURE 1
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Define Ly ;. n:X X I = X (abbreviated to L’) by the formula:
[fm o N(z,5),2u] if 0<

1
\U\‘Z‘

L' ([z,ul,s) = .
e e 2) {[J(z,s,2—2u),0] if <u<l.

and define K: X X I = X by:

z,u(l +9)] if o< u<s
K([z,ul,s) = [z, u( o 2
[z,s(1 —u)+u] if 3<u<]l

(K is a “linear” homotopy from idy to a map which sends the points [z, u],

<u<l, to [z 1] = [£(z),0].)

Observe that L'( - ,0) = K( -, 1) o (f" > No)and L'( -, 1) = K( -, 1)
o (f™ < N;). Thus, for N, J and m as above, we have:

PROPOSITION 6.2. The concatenation

/\ T

L(N’J’m) =Ko (fm O Ny X ld) *L(,N,J,m) * (KO (fm o N; X ld))—_1

T S
is @ homotopy from fmo N, to fmoN,. [

(For a homotopy Q, Q! means the homotopy Q ~!(x, s) = Q(x,1 — 5).)

Next, we will build special elements of I'. The map f:Z—~>Z
is a periodic homotopy idempotent if there exists r > 0 and g > 0 such
that f7 is homotopic to fr*9; it is not assumed that this can be
achieved by a basepoint preserving homotopy. If for some r >0 and
g > 0 there is a homotopy N: f"= fr+e for which there exist J and
m > 0 making Diagram 6.1, commute up to homotopy rel Z x {0, 1} x I,
then we say that f is eventually coherent. In this case, Proposition 6.2 gives
a homotopy L(N,,,m):j?”m :f’“”m. The concatenation S =S¢ n.7, m
=R, g+m*x Ly s m*x R, is a homotopy from idy to idy whose
rotation degree is g. Given f, the least ¢ > 0 for which there exist r, N, J
and m as above (assuming that they exist at all) is the period of f.
Then r and m may be chosen as large as desired.

These conditions on a map f which give rise to an element [S] € T having
positive rotation degree, are not arbitrary. Rather, they are the general case:

THEOREM 6.3. Let f:Z— Z be a map for which the rotation degree
homomorphism Py :I" = Z isnon-zero. Let q be the least positive element

of P.(I'). Then [ isan eventually coherent periodic homotopy idempotent
of period q.
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Before proving this, we set up notation for points of the infinite
mapping telescope of f, i.e. the infinite cyclic cover of X whose fundamental
group is H. This space, denoted by X, is the quotient of the disjoint union
II,.,Z x {n} x [0, 1] obtained by identifying (z, n, 1) with (f(z), n + 1, 0)
for all n. The image of (z, n, u) in X will be denoted by [z, n, u]. The
covering projection X — X is given by [z, n, u] — [z, (n + u) mod 1]. The
space X is a “two-ended union” of mapping cylinders: we write M(f), for
the subset of points [z, n, u] such that 0 < u < 1, and Z, for the subset of
points [z, u, 0].

Proof of 6.3. Let F”:idyx = idx represent y € I' of rotation degree g,
and let FY: X x I - X be the basepoint preserving lift of F. The map F" is
a homotopy between idy and #9, where & ([z,n,u]) = [z, n+ 1, u] is
“translation by 1”7. Let i,,:Z—*)_( be the “inclusion” of Z as Z,, i.e.

i,(z2) = [z, n,0]. The composition Z X Iloild)—( xI5 X gives a homotopy
between i, and i,. The formula (z,s) [f59(z), [sql, sq — [sq]) gives
a homotopy between i, and i, © f9. Combining the two, we get a homotopy
®:i,=1i,0 f9. The track of ®:Z X I—- X lies in U/ 9 ' M(f), for
suitable integers r' <0< g <r + ¢g. Form a homotopy ¥:Z X I— }_(,
W:i,,,0 fr=1i,,,0 fr*9, whose entire image lies in Z,,,, by “pushing”
the track of @ along the mapping telescope into Z,,,; explicitly, if
®(z,8) =[z',n,u’l] then ¥(z,5) =[f"*2-""(z'),r + q,0]. Identifying
Z, ., with Z, we get a homotopy between f” and f"*4.

%r +y

. r
oy ff (5

LA aLAASL A
. '

r+g

L § (3

r-{-z
r+;

FiGure 2

It remains to prove eventual coherence. Since F7 is Z-equivariant
(with respect to the Z-action generated by @), there is a Z-equivariant
homotopy ¥: X X I — X such that ¥ = ¥ o (ip X id).
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Consider the diagram:

Zx1 "5 zxr 3 x b X

} i xid }ioxid } 1@

XxI = XxI % X = X
T xid 18
ZxI > X

The two middle squares commute. The upper right square commutes up to the
homotopy given by:

[z, n, u + 5] if 0<s<
[f(2),n+1lu+s—1) if1-u<s<

(Iz, n, ul, s) = {

There is a corresponding homotopy for the upper left square. Thus,
the diagram

ZxI —» X
lfxid lfx
ZxI > X

commutes up to a homotopy J':¥ o (f xid) = f o ¥ which has the
property that, for i=0 or 1, the restriction J'|:Z X (i} x I~ X is
homotopic rel Z x {i} x {0, 1} to a constant homotopy. Thus, adjusting J*,
we obtain a homotopy J”:Z X I X I—- X rel Zx{0,1} x I between

¥ o (f x id) and f o ¥, The argument is finished by “pushing” the track
of J' along the mapping telescope into Z,.,:+,» where r+q + m 18
sufficiently large: the details are similar to the construction of ¥ from ®. We

then obtain a homotopy commutative diagram similar to (6.1), showing that
£ is as claimed. [l

Remark. We do not know if every periodic homotopy idempotent
f:Z — Z is eventually coherent. The special case of interest for group theory
is the case where Z is aspherical and f is a homotopy equivalence so that we
are essentially concerned with an element of the outer automorphism group
of m,(Z). A consequence of Proposition 7.3 is that f is indeed eventually
coherent in this situation. In the more general case where f is homotopy

equivalence but Z is not necessarily aspherical, the obstruction theory of [C]
is relevant; see [GN,].
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If (r, N, J, m) are, as above, the data for an eventually coherent periodic
homotopy idempotent of period g, we can form (r, N % (f70 N),
J* (f90J),m). Here, N® = N % (f90 N): fr = fr+24_ and the conca-
tenation J@® = J % (f? 0 J) takes place in the first I-factor, so that it
coincides (after suitable reparametrization) with J on Z X [O, %] X I
and with f?90 Jon Z x [%, l] X I. One verifies that (r, N, J@ m) make
Diagram 6.1 commute, hence one has, as above, S, N®, @, m) = Rri2g4m
* L n@, @), m * R 7., a homotopy from idy to itself whose rotation

degree is 2q. Iterating this procedure one gets, for any positive integer v,
St N s my = Rrvvgem X L(j\,l(v),m)’m) * R,‘+1m, a homotopy from idy
to itself of rotation degree vg.

PROPOSITION 6.4. With f and q >0 as in Theorem 6.3, and Vv
a positive integer, let v € I' have rotation degree vq. Let (r,N,J, m) be
data exhibiting [ as an eventually coherent periodic homotopy idempotent
of period ¢q. Then there exists & €I of rotation degree 0 such that

Y = 6[S(r,N(V),J(v),m)].
Proof. Take & to be Y[S¢, v, s, m]1 71, []

Elements of I having rotation degree O can be ‘“regularized”.
Let Fd9:idy = idy represent such a ©&. The basepoint preserving lift
is F8: X xI— X, a homotopy from idy to idy. As in the proof
of Theorem 6.3, there is an integer /> 0 such that the track, under
F3, of every point [z,n, u] € X can be “pushed” equivariantly into
{[y,n+1L,ul|y e Z}. Thus, by an obvious further adjustment, we have:

PROPOSITION 6.5. If & has rotation degree 0, then for any sufficiently
large | (dependent on §), F?® is homotopic rel X x{0,1} to a
homotopy of the form R,k L(y ;o % R ' where N:fl=fl s
constructed from F3 as in the proof of Theorem 6.3. L[]

We now prepare to compute the derivation 5(1(X ):I' > HH,(ZG).

In the remainder of this section we assume that Z is a finite CW complex,
that the map f is cellular and that the basepath o is cellular. Then
X = T(Z, f) inherits a natural CW structure. We will also assume that f is
a m,-equivalence; i.e. the induced map f.:7m(Z,v)— n,;(Z, f(v)) is an
isomorphism. Thus 0: H — H, defined above, is an automorphism. Then the
group G is a semidirect product of H with 7T = m(S!, 1); there is an exact
sequence: H>>> G > T where H»>— G is induced by the inclusion i: Z & X
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and G— T is induced by p;. We write ¢ = [yo] ~! € G, projecting to a
generator of 7, so that 0: H— H is given by At tht~'. We make this
choice because we deal with right modules; here and in [GN,] we prefer “#”
rather than ‘““#~1” to appear in our matrices. ~

Since 0:H— H 1is an isomorphism, the universal cover, ~X, of
X = T(Z, f) can be thought of as the mapping telescope of f : Z = Z. Then
we have the following model, denoted by C, ()Z' ), for the cellular chain
complex of X. Let (Cy (Z), 25) be the cellular chain complex of 7. Define
Cs«(X) by

Co(X) = (Co-1(2) @ Cu(2)) @z ZI1,171]

where the right action of G on C, ()~( ) is given as follows: if At/ € G and
a®teC, ()~() then (a ® tH)ht/ = abi(h) Q t'*/. A choice of oriented
lifts of the (n — 1)-cells and the n-cells of Z determines a finite ZG basis

for the right ZG-module C, ()~( ). The matrix of the boundary operator
X6n+ 1:Chi1 (X) = C,(X) with respect to the given ZG bases is:

[20,] 0

(= D" T = [fult) [20441]
where [zén] is the matrix of Zén, [fn] is the matrix of fn and 7 is an
identity matrix of the same size as [ fn]. For background on the following
calculations, the reader is referred to [GN,, §4]. See also the Sign
Convention in §1.

Let (?jk)n: C, (f( ) — CnH(f( ) be the chain homotopy defined by

the k-th tumble R,. The matrix for (?/’;’k),, is:

0 (=D P Eig ([falt)!

0 0 '

Thus we have:

PROPOSITION 6.6. trace(é X /27,() is the Hochschild 1-chain

~ k-1 —~
L (=Drrace(((/,1) @ X (1£:10)) .

n=>0

Proof. The identity d(1 ® 1 ® g) = 1 ® g implies that terms of the
form trace(I ® M) are boundaries and can therefore be ignored. [

Next, suppose f is an eventually coherent periodic homotopy idempotent.
As above, we have r >0, N: f"= fr+4, m >0, and J: Z X [ X [ — Z;
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and Ly, s, m is a homotopy from f7*+™ to fr+a+m_ By Proposition 6.2,
L (n,;,m) 15 the concatenation of three homotopies: the first and third of
these have zero matrices at the chain homotopy level, and the second,
which is Ly ; n, is easily seen to give a chain homotopy whose block
for C,(X)— C,,(X) is

[f™ [ A o] 0
w il

Here, ./ : Cx (Z ) = Cy 4 (Z ) is the chain homotopy defined by N, and W is
a matrix whose exact nature need not concern us. Because of our sign
conventions, and the fact that the upper right block is zero we get:

PROPOSITION 6.7. Let Zn.s.m:Cs(X) = Cy.1(X) be the chain
homotopy determined by L,; m . Then trace(5® L 1.m) = 0. L]

Now, let & e I' have rotation degree 0. Then n,(8) lies in HC G
(where m is defined in §1). By Proposition 6.5, we may take F°® = R,
* L(_NI’ 7,00 X R ;' for any sufficiently large /. Under the homotopy
F3:idy = idy, the basepoint traverses a loop representing 1. (8). Let D?® be
the chain homotopy defined by F8. We rewrite 14 (8) = ('L ()t
At the matrix level, we then have:

Dd =% — Linsoy(t (8)t=1)t! — Zt-'(tMx(8)"1) .

Here, we have used the fact that the matrix of a chain homotopy for a
concatenation A x B is &/ + #g~! where «/ and % are the matrices of
A and B and g € G is the element represented by A (basepoint X I), and
the matrix for A ~!'is — .o/g. In what follows, recall the right action of I" on
Hochschild chains and homology described in §2. Using Proposition 6.7
we get:

COROLLARY 6.8. If & eI has rotation degree 0, then X,(X)(8)
is represented by the Hochschild cycle

trace(d ® D?) = trace(d ® @1) 1-8-1H
for any sufficiently large | (dependent on §). [

Now we return to the situation discussed in Theorem 6.3 and Propo-
sition 6.4. We have y e I' of rotation degree vq. By Proposition 6.4,
vy = 8[SM] where 8 is represented by F?, and, for suitably large r and m
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(depending only on f), S™ = Rriygim X Livw, s, m % R . Under F,
the basepoint traces out a loop representing

Ny (8)2-r=va=m(grevarmn (8) ~Inu(y)t =" ~") 1 ™ = ne(¥) .

Here, the four factors correspond to the four parts of the concatenation.
Thus

trace(d ® D) = trace(d ® D?®) + trace (8 ® @,men#(éi)—l)
— trace(d ® Q(N,J,m)l‘”"“mﬂ#@)—l)
— trace(®@ @ Z,om(¥)1) .
Using Proposition 6.7 and Corollary 6.8 and the right I'-action described
in Proposition 2.6, this becomes:
trace (0 ® DY) = trace(d ® @1)(1 -8+ trace(é X jz?,wﬁm)?)—l
— trace(é X ﬁéﬂ,m}y—l .

In particular, if we enlarge / or r+ m so that /=r+ vg + m, and
set w =r + m, we get:

PROPOSITION 6.9. Let vy € I' have rotation degree vq >0 where q
is the least positive element of P4([). Then X,(X)(y) Iis represented
by the Hochschild cycle:

L+vg—1

Y (- Drtrace(([f10) @ Y (1f210)7)

n>=0 i=u

+ Y (= Drtrace(([f-10) ®@ Y (Lf210)) (A -y~ D)
=0

n=0 i

for any sufficiently large positive integer . (dependent on vy). U]

Remark 6.10. By Corollary 6.8, the same formula holds for y of rotation
degree 0; in that case, the first term in Proposition 6.9 is trivial.

If the subgroup I'' C IT' is finitely generated by vy.,...,v, and if the
number p in Proposition 6.9 is taken to be the maximum of the numbers p;

corresponding to vy;, then we have an inner derivation % :I'' - HH,(ZG)
defined at the level of cycles by:

Y p—1 —~
Zy)= Y (-Drtrace(([f»10) ® Y. ([f.10)) A —y-1).
=0

n=0 i

This gives:
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COROLLARY 6.11. If i:T'"S T' is the inclusion of a finitely generated
subgroup, there is an inner derivation <% such that for all vy eI’ of
rotation degree vq > 0, (X,(X) — %) (y) is represented by the Hochschild
cycle

u+vg—1

Y (- Drtrace(([f.18) ® Z (Lf18)7)

n>=0

which therefore depends only on the rotation degree of vy. In particular,
the derivation X,(X) — % represents i*(y;(X)). [

Now we can compute %;(X):I' = H;(X) = G, using Definition A;.

The automorphism 6: H — H induces an automorphism 0,,: Gap, = Gay .
We identify G,, with coker(id — 0,,) X Z by sending #t” € G to ({4}, — n).
If vy eI’ has rotation degree 0, it follows from Corollary 6.8 that
v (X)(y) =0. If y e’ has rotation degree vg > 0, we obtain %;(X) (y)
in two stages: first apply the augmentation, €, to the right sides of the
tensors in Proposition 6.9, yielding:

w+vg—1

Y (- Drtrace(([f210) ® Z [f.]) € C\(ZG, Z)

n>=0
and then apply Proposition 2.1 to get:

u+vg—1

Y Z (— 1)n A(trace ([ £, 1¢1F51)

n>=0 =

u+vg-—1

= ) Z (- 1)” [A(trace([fnl [f51) + trace([fi;DA(r)]

n=0 P=

which simplifies to:

(6.12)
p+vg—1 _ . p+vg -1
xl(X)(v)=(Z E (- DrAtrace(LAILD), = X L(f"))

n=0 i=

e coker(id — 6,,) X Z .

Here, L(f’) is the Lefschetz number of f‘. Note that the matrix
A([f,]) has entries in coker(id — 0,,), and for large p the sequence
(L(f*), ..., L(fr+ve-1)) is periodic since f" = fr*9.

Summarizing:

THEOREM 6.13. Let f:Z—Z be a cellular m,-equivalence of a
connected CW complex, and let X be the mapping torus T(Z, f).
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(i) if f is not an eventually coherent periodic homotopy idempotent,
then v,(X)(y)=0 forall yel;

(ii) if f is an eventually coherent periodic homotopy idempotent of
period q, and vy €T has rotation degree vqg > 0, the two terms
in (6.12) give the two factors of %:(X)(y) € coker(id —8,,) X Z;
if v has rotation degree 0, %1 (X)(y)=0. [

Remark. 1If f is not cellular then the above theorem can be applied to
any cellular approximation of f. Since any two cellular approximations of f
are homotopic, the corresponding mapping tori are homotopy equivalent.
By homotopy invariance (Theorem 1.2), this procedure gives a well defined
answer.

We get cleaner results when f is also a homotopy equivalence. If,
in that case, ¢ is the least positive element of P, ("), the proof of
Theorem 6.3 shows that f satisfies the eventually coherent periodic homotopy
idempotent property with r = m = 0; i.e. there is N:id, = f9, and J
making Diagram 6.1 commute with m = 0. The point here is that the
inclusions Z,— X and Iz M(f), — X are homotopy equivalences.
Since it is now possible to “push” backwards as well as forwards in the
telescope X, we can also take / = 0 in the formula preceding Proposition 6.9.
Thus we can take p = 0 in Proposition 6.9:

THEOREM 6.14. If f is a homotopy equivalence and an eventually
coherent periodic homotopy idempotent of period q, and yeT
has rotation degree vq >0, then >~(1(X) (v) is represented by the
Hochschild cycle

vg — 1

Y (= Drtrace(([£10) ®@ Y (1fn10)0);
I=0

n=0
and

vg—1 _ ‘ vg —1
x1<X)<v)=(Z Y (-DrA(trace((f,11:1), - ¥ L(f"))-
i=0

nz0 =0
These formulas are determined by the rotation degree of v. U
Example 6.15. Let f =id,. Then X = T(Z,idz) = Z x S. Let v > 0.

The v-tumble, Z,, represents an element of T — 1 (€(Z x §1),id) of
rotation degree v. By Theorem 6.14, we have:

X1(Z x SY)((2,]) = 4(2) T, (t@ 11_ ’V) |
-
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This formula also holds for v < 0. It follows that y;(Z x S")([%4,])
= (0, —x(Z)v) = x(Z)v{t} where {t} eH,(Zx S) = H\(Z) ® H,(S!) is
the generator of the H,(S!) summand determined by ¢.

There is a useful simplification of these formulas in the rational case.
The identity

—trace ([ f,12)*1) ® 1 + (i + Dtrace([f.1t @ ([f12)7)
_ d( y trace([fn]t®([fn]t)"‘”1®([fn]t)j“1)
ji=1

demonstrates that ﬁ trace ([ f,17)*1) ® 1 is homologous to trace([ falt
® ([f.1¢)7). We can substitute in Proposition 6.9 and Theorem 6.14. Write
[ f] for the matrix @ ,(— 1)"[f,]. The matrix of the map f*is [JZ¢6/([f]),

so ([f1¢) = [fi]1¢!. Thus we get:

THEOREM 6.16. X 1(X;Q)(y) is represented by the Hochschild cycle

b+vg _ il _

Y i(trace[/ D@1+ ( Y, 7 (trace[f )1’ ® 1) I1-v-1h
i=p+1 i=1
for any sufficiently large positive integer | (dependent on vy). When f
is also a homotopy equivalence then X;(X;Q)(y) is represented by the
Hochschild cycle

f Pltrace[fDr@1. O

Remark. The formula for 5(1(X ; Q)(y) above can be expressed in
terms of the “reduced Reidemeister traces” of the iterates f*,n = 1, ..., vq.
This trace of f© take values in the ‘“reduced’ 0-th Hochschild homology
group of ZH with 67-twisted coefficients; see [GN,, §5].

The computation of y;(X; Q) naturally leads one to consider the
homology Reidemeister trace of a cellular map f: Z — Z, denoted by L”*(f).
It is the element of H,(H) = H,, given by

Li(f) = X (= DrA(trace([/,]) -
nz0
If k is a commutative ring of coefficients, let L*(f; k) denote the image
of L"(f) under the homomorphism H,(H)— H,(H;k). Let L"(f;k)
ecoker(id—eab®idk_) denote the image of L*(f;k). It is easy to
see that L"(f) and L*(f; k) depend only on the homotopy class of f.
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(Both L"(f; k) and L"(f; k) have an interpretation in terms of Nielsen fixed

point theory, but we will not make use of this.) ‘
Theorem 6.16 together with the proof of (6.12) yields the following

formula. For all sufficiently large w:

hive - . -
LXQM = L GL'(S5Q, L)
i=p+1
Since this formula is valid for all sufficiently large p, it is1 easy to see
(because of periodicity and the appearance of the coefficients ;) that:

COROLLARY 6.17. For all sufficiently large 1, L"(fi;Q) = 0. L]
Thus:

COROLLARY 6.18. For all sufficiently large ..

n+vg

aoe (o, 'y L(f")) .

i=p+1

In particular, if f is also homotopy equivalence
vg —1 .
%1 (X5 Q) (y) = (0, — X L(f’)) .
i=0
7. MORE ON GROUPS OF TYPE %

We consider in more detail the special case of the mapping torus of a
homotopy equivalence of an aspherical complex.

Let H be an arbitrary group, let 6: H = H be an automorphism, and
let G be the semidirect product { H, t| tht—!=0(h) for all h € H). Write
Fix(8) = {h € H|0(h) = h} and write {x) for the cyclic subgroup generated
by x € G. Let Out(H) = Aut(H)/Inn(H) be the group of outer auto-
morphisms of H, i.e. the quotient of the group, Aut(H), of automorphisms
of H by the normal subgroup Inn(H) of inner automorphisms.

LEMMA 7.1. If O has infinite order in Out(H), then Z(G)
=Z(H)NnFix(9). If 6  has finite order r in Out(H), and
ho € H is such that 07(-) = hy(- )ho_l, there are two cases:

(1) No positive power of hy lies in Z(H)Fix(8). Then Z(G) = Z(H)
N Fix (0).
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(2) Some positive power of hy lies in Z(H)Fix(0). Let p be the
smallest positive integer such that h,” e Z(H)Fix(0) and let
X =uhy"t? where ueZ(H) is such that uh,? € Fix(0). Then
Z(G) = (Z(H) N Fix(8)) (x).

Proof. Suppose ht™ € Z(G) where h e H. Then h06™(h’) = h'0"(h)
for every h' € H, n € Z. In particular, taking 2"’ = 1 and n = 1, & € Fix(0).
Taking A’ arbitrary and n =1, 67(h’) = h~-'h'h for all A’ € H. Thus,
if 0 has infinite order in Out(H) and Aht” € Z(G) then m =0 and
heZ(H). So Z(G) C Z(H) n Fix(0), and the reverse inclusion is clear.

If 6 has finite order r in Out(H) and At™ € Z(G), the above argument
shows that m = vr for some veZ. So 0V (:)=h"1(-)h=hy(")h,",
implying hhy € Z(H). Conversely, it is straightforward to show that any AzV”
with # € Fix(0) n h, ' Z(H) lies in Z(G); hence: Z(G) = {ht'" € G|v € Z,
h e Fix(8) n hy, "Z(H)}. If no positive power of h, lies in Z(H)Fix(0)
then htv" € Z(G) if and only if v=0 and & € Z(H) n Fix(0). If some
positive power of A, lies in Z(H)Fix(6), let p and u be as above. Then
any ht'" € Z(G) can be written as (hhy"u-")(uhy,?t?)" where v = np
(observe that hhy?u-" e Z(H) n Fix(0)). [

ADDENDUM 7.2. If ©  has finite order r in Out(H) and
07(:) = ho(-)hy ' then

Z(G) ={ht"e G|veZ, heFix(8), hhje Z(H)} .

Proof. 1In case (1) of Lemma 7.1 this is clear, and in case (2) it is part
of the last proof. [

We are very grateful to Peter Neumann for providing us with the proof
of the following proposition which shows that (1) in Lemma 7.1 cannot occur.

PROPOSITION 7.3. Let 0:H—>H be an automorphism whose
image in Out(H) has finite order r, and let hyoe H be such that
07(+) = ho(:)hy'. Then hye Z(H)Fix(0).

Proof. Let 07(+) = ho(-)h,"'. Since 870 = 667, we have 0(h,) = kol
for some (e Z(H). For i=0,...,r— 1, let {;=0/({). The identity
ho = 87 (ho) implies that {oC; -+ {,_; = 1. Definex = A,C, ¢ %+ ¢,
Then

0(x) = AhCIC ™ - 2 G = hL TR L,
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(the second equality uses {,_; = ({oly -+ {,_») ! and the fact that the
group generated by 4, and Z(H) is abelian). Thus x € Fix(8) and so
hy € Z(H)Fix(0). [J

Remark. In [GN;3] we called an automorphism 6 as in Case (2) of
Lemma 7.1 special. In view of Proposition 7.3, we abandon this terminology
here.

Remark. The hypothesis of Proposition 7.3 yields a homomorphism
Z/rZ — Out(H) and hence a homomorphism Z/qZ — Out(H) for any
multiple g of r. There is a well-known obstruction O, € H3(Z/qZ, Z(H )
whose vanishing is equivalent to the existence of an extension 1 = H = FE
— 7Z./qZ — 1 with the given outer action. The content of Proposition 7.3
is that O, = 0. For more on this, see [GN4].

Combining Lemma 7.1 and Proposition 7.3, we have the following
structure theorem for the center of the semidirect product G:

THEOREM 7.4. If © has infinite order in Out(H), then Z(G)
=Z(H)nFix(8). If ©  has finite order r in Out(H) then
Z(G) = (Z(H) n Fix(0)){x) where x = uh,"t? , p is the smallest
positive integer dividing r such that h,” € Z(H)Fix(0) and ue Z(H)
is such that uh,” e Fix(0). [

Definition 7.5. Let 6:H— H be an automorphism whose image
in Out(H) has finite order r, and let &, € H be such that 87(-) = ho(-)h; .
The period of 0 is the integer ¢ = pr where p is the least positive integer
such #,” € Z(H)Fix(0).

Note that Proposition 7.3 guarantees that the period ¢ exists. It is
straightforward to show that ¢ depends only on the image of 6 in Out (H).
From Definition 7.5, we have that r, the order of 6 in Out(H), divides ¢
and by Proposition 7.3 ¢ divides r2.

PROPOSITION 7.6. Suppose 0:H — H has finite order m in
Aut(H). Then the period of 8 divides m.

Proof. Let hy € H be such that 87(+) = ho(+)hy ' where r is the order
of the image of 6 in Out(H). Then hje Z(H) C Z(H)Fix(0) where
n=m/r. U]

We give some sufficient conditions for the period of an automorphism
to coincide with its order in Out(H).
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PROPOSITION 7.7. Suppose ©:H — H has finite order r in Out(H),
the restriction of © to Z(H) is the identity, and Z(H) and has no
[-torsion for | dividing r. Then the period of 0 is r.

Proof. Let 07 () = ho(-)h, '. Using 676 = 60", we have o = h,0(h, '
€ Z(H). The restriction of 6 to Z(H) is the identity so ® = 6/(w)
= 0/(ho)0/*(hy') for any j. Thus " = ;2507 (he)0/* (kg ")
= hoe’(ho‘1 = 1. Since Z(H) has no [-torsion for / dividing r, o = 1.
Hence h, € Fix(9). [

A similar argument shows:

PROPOSITION 7.8. Suppose 0:H — H has finite odd order r in
Out(H) and the restriction of 0 to Z(H) is given by h— h-1. Then
the period of 0 is r. [

Let Z be a (not necessarily finite) K(H, 1) complex and let f:Z — Z
be a continuous map which induces 0 (after choosing a basepoint and
basepath). The homomorphism (p,)«: G —>Z of §6 is identified with
htm— —m. Since T = n,(%€(Z),id) = Z(G), the rotation degree homo-
morphism Py :Z(G) — Z is just the restriction of (ps).. We immediately
conclude from Theorem 7.4:

COROLLARY 7.9. There is an an exact sequence 0 — Z(H) n Fix(0)
— Z(G) 37 such that P.(Z(G)) = qZ where q=0 if 0 has
infinite order in Out(H) and q > 0 is the period of 9 Iif the image
of O has finite order in Out(H). [

Theorem 6.3 and the discussion preceding it yield:

PROPOSITION 7.10. The map [ is an eventually coherent periodic
homotopy idempotent of period q > 0 if and only if 0 has finite order
in Out(H) and has period q > 0. [

Now suppose H is of type ¥ so that we may take Z to be a finite
K(H,1) complex. Assume f is cellular. Then X = T(Z, f) is a finite
K (G, 1) complex. By (6.12) and Proposition 6.18,

THEOREM 7.11. If © has infinite order in Out(H) then y,;(G) = 0.
If © has finite order r in Out(H) and period q > 0 then
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vg —1 _ ' r—1 .
%1 (G) (htve) = ( L L (=D A(ace(l/] LD —(@/nv X L(f’))

nz20 i=0

and

r—1 r—1
11 (G: Q) (hr') = (o, —(@/rv Y L(f")) = (a/rv ¥ LU

i=0 i=0

where h e Fix(0) n hy """ Z(H). [

Similarly, one can read off formulae for X;(G) from Theorem 6.14
and the rational version from Theorem 6.16.

8. OUTER AUTOMORPHISMS OF GROUPS OF TYPE .¥

In this section we apply the preceding theory to prove the following
theorem which relates the algebraic topology of an automorphism 6: H — H

of a group H of type ¥ such that 6 has finite order in Out(H) to the fixed
group of 6.

THEOREM 8.1. Let H be a group of type ¥ which has the Weak
Bass Property over Q. Suppose that 0:H — H is an automorphism
whose order in Out(H) is r > 1. If the sum of the Lefschetz numbers
YI_oL(0%) is non-zero then Z(H) n Fix(0) = (1).

Before proving this we note that the quantity Ef;éL(G") appearing
above has the following interpretation:

PROPOSITION 8.2. Y/_,L(8') is r times the Euler characteristic
of the 6-invariant part of the homology of H, Ii.e.,

r—1
Y, L(®)=r Y (—1)/rankker(id — 0;: H;(H) - H;(H)) .
i=0 j=0
Proof. By elementary linear algebra, for any square complex matrix A4

with A7 = I we have trace(Y/_,A4') = rdimker(/ — A). The conclusion
easily follows. [

Proof of Theorem 8.1. Let G be the semidirect product G = H X¢ T
where T is infinite cyclic. By Lemma 8.7, below, G also has the WBP
over Q. Applying Theorem 7.11 to G, we have that y,(G; Q) # 0. By
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Theorem 5.4, Z(G) is infinite cyclic. By Corollary 7.9 there is an exact
P

sequence 1 = Z(H) n Fix(0) = Z(G) = gZ — 1 where the period of 6, g,

is positive. It follows that Z(H) n Fix(8) = (1). [

If y(H)+# 0 then Z(H) = (1) by Proposition 2.4 and consequently
Z(H) n Fix(8) = (1) in this case. If y(H) = L(8°) =0 then Y/_, L(8%)
= Y'Z!L(0%). These observations vyield the following corollaries of
Theorem 8.1:

COROLLARY 8.3. Let H be a group of type % which has the WBP
over Q. Suppose that 0:H — H is an automorphism of order 2 in
Out(H). If L(®)#0 then Z(H)n Fix(8) = (1). [

COROLLARY 8.4. Let H be a group of type & which has the WBP
over Q. Suppose Z(H) + (1), the automorphism 6:H — H has finite
order r in Out(H) and the restriction of 0 to Z(H) Iis the identity.
Then Y. _!L(8")=0.

i=1
Proof. Since the restriction of 6 to Z(H) is the identity, Z(H) N Fix(0)
=ZWH)+1). U

An automorphism which has finite order in Out(H) may have infinite
order in Aut(H). If 6 has finite order in Aut(H), the Weak Bass Property
hypothesis can be dispensed with in Theorem 8.1 and Corollary 8.3:

PROPOSITION 8.5. Let H be a group of type 7. Suppose that
0: H— H has finite order in Aut(H) and L(0©)+0. Then Z(H)
N Fix(0) = (1).

Proof. Let w € Z(H) n Fix(0). We use the terminology of [Br]. Let Z
be a finite K(H,1). Choose an essential fixed point, v, of f:Z—>Z
(inducing 0) as the basepoint of Z. There is a homotopy K: f = f such that
K (v, +) represents . The fixed point v is K-related to some fixed point u
of f [Br, p. 92]. Hence, for some s > 0, v is J-related to v, where J is
the s-fold concatenation K % --- % K. Then there exists ¢ € H such that
®*® = 60(c~1); compare [G]. As in the proof of Proposition 7.7, we get
o= J/2,0(c8(c"))=1,s00=1. [

Note that Y/Z{L(87) # 0 implies one of the L(8/)’s is non-zero. Since
Fix(0) C Fix(0%) for i > 0, we recover Theorem 8.1 (but without the Bass
Conjecture hypothesis) in the special case where 0 has finite order in Aut(H).
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The remainder of this section is devoted to the proof of Lemma 8.7 used
above.

LEMMA 8.6. Suppose that the group H has the WBP over Q.
Let T be an infinite cyclic group. Then the product group H X T also has
the WBP over Q.

Proof. Let G = H x T. Identify H with H x {1} C G. We use the nota-
tion of §5. By Schafer’s theorem [Sch, p. 224] applied to the normal subgroup
H C G, the image of Ty:Ko(QG)— HHy(QG) lies in HH,(QG)x.
Let p: G — H be the projection homomorphism. There is a commutative
diagram:

K,(QG) = HH,QG)y = Q
p*l p*l H

Ky(QH) = HH,QH) = Q

Write HHo(QG)y = HH,(QG)cy ® HHo(QG)y; where HH,(QG)y is
the direct sum of the HH,(QG)cy)’s over C(g) € c(H) — {C(1)}; also,
HH,(QH) = HHy(QH)cny @ HH,(QH)'. By hypothesis, H has the WBP
over Q, i.e. the composite

Ko(QH) = HH,(QH) » HHy(QH)' 5 Q

is zero. Since p*(HHo(QG)C(I)) CHHQ(QH)CU) and p*(HHo(QG)}_}
C HHy,(QH)’, the conclusion follows. [

LEMMA 8.7. Suppose that the group H has the WBP over Q and that
0: H—> H is an automorphism whose image in the group of outer
automorphisms of H has finite order. Then the semidirect product
H X3 T also has the WBP over Q.

Proof. Let G=H XqT=<(H,t|tht~'=0(h) for he H). Let n be
the order of 8§ in the group outer automorphisms of H. Then the subgroup
G’ of G generated by H and ¢” is isomorphic to H X T; furthermore, G’ is
normal and of finite index, n, in G. There is a “transfer” homomorphism
trans: HH,(QG) - HHy(QG") defined as follows. Given g € G, we can
write gt' = t°Wg;, for i =0,...,n — 1 where g; € G’ and ¢ is a permu-
tation of {0,...,n—1}. Let Fix(o) ={i|o(i) =i}. Then trans(C(g))
= Yicrix(e)C(&). Observe that if ge G" then Fix(c) ={0,...,n—1}
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because G’ is normal in G. In particular, g4 (trans(C(g))) = n if g € G'.
There is a commutative diagram:

KyQG) =3 HH,(QG)
res l trans l

T
Ko(QG") = HH:(QG")
where res: Ko(QG) » Ko(QG’) is obtained by regarding a projective
QG module as a projective QG’ module; see [Bass] for details concerning
the finite index transfer.

Recall that HH,(QG) = HH,(QG)y ® HH,(QG) where HH,(QG)
is the direct sum of the summands HH,(QG)c() corresponding to
the conjugacy classes not represented by elements of H. By Schafer’s
theorem [Sch, p. 224] applied to the normal subgroup H C G, the image
of Ty:Ko(QG)—~ HH,(QG) lies in HHy(QG)y. Thus we can replace
HH,(QG) with HH,(QG)y in the above diagram and obtain the com-
mutative diagram:

K,(QG) = HH,QG)y 3 Q
resl transl an

KoQG) = HH,QG) 2 Q
(the right square commutes because H C G’ and because of the obser-
vation made above). Write HHy(QG)y = HHy(QG)cy ® HH,(QG) 4
where HH,(QG)y is the direct sum of the HH (QG)cy)’s over
C(g) € c(H) — {C(1)}; also, HHy(QG') = HHy(QG")c1y ® HH(QG')".
Then trans(HHo(QG)ca)) C HHy(QG')cuy and trans(HH,(QG)y
C HH,(QG’)'. By Lemma 8.6, G’ has the WBP over Q, i.e. the composite

T €y
Ky,(QG") = HH,(QG") = HH,(QG')' = Q is zero. The conclusion follows
from the above diagram. [

9. TRACE FORMULAE FOR HOMOLOGICAL INTERSECTIONS

The goal of this section is to prove a ‘“trace formula” (Theorem 9.13) for
the homological intersection of the graph of a map F: M X Y = M with the
graph of the projection map p: M X Y = M where Y is a closed oriented
manifold and M is a compact oriented manifold. This result will be
applied in §10 to complete the proof of Theorem 1.1.
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In what follows, all homology and cohomology groups will have
coefficients in a field F. Recall that we use Dold’s sign conventions [D,]
for cup, cap and cross products.

Let M be a compact n-dimensional manifold with boundary M.
Assume M is oriented over F with fundamental class [M] € H,(M,dM).
Let ¥V C M be an open collar of 9M and M’ = M — V. Let A C M X M be
the diagonal and let

(M X M,M' xdM) & (MxM,MxM-A) and
(M x M, M’ X 0M) & (M x M, M x dM)

be the inclusions. Since 7/ is a homotopy equivalence of pairs it induces
an isomorphism i*: H*(M X M, M X OM) > H*(M X M, M’ X 0M). We
define the diagonal cohomology class Dy € H*(M X M, M X OM) by
Dy = (i*)~1j*(Ty) where

Tye H MXM,MxM-—A)

is the Thom class of M (see [Sp, §6.2] where T), is called an orientation
for M).

There is a slant product H' (M X M, M X dM) ® H; (M, dM) 4 Hi-/(M),
see [MS, p. 125]. The reader should be aware that the sign conventions
for cup, cap and cross products used in [MS] coincide with those of [D;]
but differ from those of [Sp]. A straightforward adaptation of the proof
of [MS, Lemma 11.9], where the case OM = @ is treated, shows that
the fundamental class of M and the diagonal cohomology class of M are
related by:

PROPOSITION 9.1. Dy /[M]=1e H'(M). [

_ For each k >0, choose a basis {b]|j=1,..., N(k)} for H;(M). Let
{b¥|j=1,...,N(k)}, be the corresponding dual basis for H*(M), i.e.
(byf,b}) = 8;; (Kronecker delta). For k > 0, define d7 % € H"~* (M, dM),
j=1,..,N(k), by b =d}~*n [M]. The proof of [MS, Theorem 11.11]
carries over directly to show:

PROPOSITION 9.2. Dy = Y, (= Dk YN0 pk s grn=-k [
Let Y be a parameter space (Y is not required to be a manifold).

Let F:M X Y—~M be a map. For a € H,(Y), define f¥(a)eF by
F*(kaXa) = Exf\[=(/€1+Q)ff(J((l)bf{+q,
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The Kiinneth Theorem allows us to write

_ N(s) _
F*(bf)= Y Y bixo(kjs 1)
=1

s=0 1/

where w(k, j,s,l) € H*-5(Y).

LEMMA 9.3. fi(a) = (- Dok +q, ik, j), o).
Proof. We have:

ff{/((l) = <Z;ff+‘7,F*(bJ’.‘>< a)) = <F*(Z_7,l'(+q),bjl~c>< @)

k+gq NGs)
= Y X (bixwolk+gq,isD),bfxa)
s=0 [I=1
k+q N(s) B
= Y X (—D)*+a-9khin bt ok +q,i, 5 1) na)
s=0 /=1

= (- D% ok+q,i, k,j),oy. [

Let F: M X Y — M x M be defined by F(m,y) = (F(m,y), m) and let
p:M x Y — M be projection. We define the intersection invariant of F
to be the degree O homomorphism I (F):Hx(Y)—> Hy(M) given by
I(F)(a) = px (F*(Dy) N (IM] X o)) € H,(M) where o € H,(Y).

PROPOSITION 9.4. For any o € H,(Y),

_ Nk
IF) (@)= ) (=D* Y} binFe(b xa).
k>0 j=1

Proof. We have:
F*(b¥x di ™ )y =F*(b¥ud] " x1)

k  N(s) _
( Y Y bixo(kjs 1)) Uik x 1)

s=0 /=1

k  N(s) B
= Y Y (-DH*20-0(iudi ) xalkjs ).

s=0 /=1

Now (bfu d! *) n [M]=0bjn(d] " n[M]) =b;n b} and thus

F*(b¥ x d?™%) n (IM] x 0)
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= i Nf)(—1)““”(”"‘)(—1)““*‘)”((57ud7"‘)ﬂ[M]) X (@ (K, j,s,1) N )

s=0I[l=1

k  N(s)

= ¥ ¥ (- 1)&-9%(b5 N bY) X (0(k, j,5,1) N a).

s=0 /=1
Using Proposition 9.2 and the above identity, we obtain:

F*(Dy) N (IM] X a)

N(k) k N(s)

— Y (=DF Y ¥ Y (- DE9k B A b)) X (0K, j, s 1) na).

k=0 j=15s5s=0I=1

Now p.((0(k,j,s,1) na) X (b5 N bf)) = 0 unless k — s = q. Thus
ps(F*(Dy) N (IM] X @)

N(k) N(k-q)

= Y (- D* (- Dok, j, k—g,0),0)(bf N b)) .

k>0 j=1 I=1

Since Bf‘ ~?% = 0 for k — g < 0, we can rewrite the above expression using the
index variable r = kK — g as:

p«(F*(Dy) n (IM] X @)
(9.5

N(r+gq) N(r)

- Y Y X (- D<o(r+q,j,r ), a)(b; b9,

r=20 Jj=1 1=
Using Lemma 9.3,

N (k) N(k) N(k+q)

Y (-DF Y biaFbixa)= Y (=D Y Y fla)dfnbit)

k>0 j=1 k>0 j=1 i=1

N(k) N(k+q)

=YX (-DFY Y (-D¥olk+q, Lk j),a) bt .

k>0 ji=1 i=1
Clearly, this last expression is the same as (9.5). [l

We define the diagonal homology class Ay € H,(M X M,dM X M) by
Ay = Ax(IM]) where A is the diagonal map A(x) = (x, x) regarded as a
map of pairs A: (M,0M) > (M X M,0M x M).

The homology class A, can be expressed in terms of a basis for
homology and Poincaré duality. Let {b%}, {b¥} and {d7 ¥} be as
in the discussion preceding Proposition 9.4. Let af”k = b Jk N [M]
eH, ((M,0M), j =1, ..., N(k).

PROPOSITION 9.6. Ay = Y50 LMW (= D)k-bgh=k 5 pk [

i=1
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Proof. Without loss of generality, we can assume that M is connected.
Observe

di™ nal™ =d{" n (bfnIM]) = (d]TF U b})  [M]
(= DR B ATy [M]
= (— 1)(n—k)kl;f N (d?—km [M]) — (_ 1)(n~k)kl;j/f A b{c
— (_ 1)(n—k)k8ijb(1)

where &;; is Kronecker’s delta.
By the Kiinneth formula, we can write

_ N(k) wN(k) .k n—k k
Ay = Yisodi=1 Lj=1€;;a = Xb;

where cf-‘j € F. We have
A7 x by N Ay =d ' xb) n A(IM]) = A (A*(d" ' x b') A [M])
= A ((d]7'u b)) N [M))
= (= DDA ((bsud] ") N [M])
= (=)@ DAL (b (d) ™ N [M]))
= (=1)@-DIAL (b ADbLY = (-1)-D1§, % x b .
Now, (d" " 'x b’y n (a" % x b) = 0 whenever / # k and
@I 'x by (@ ' xbly = (~DIC-0@d  nalT) x (bin b))
= 8,;8,;b] x b .
It follows that ¢!, = (= 1)!»-0§,.. [
Up to sign, the diagonal homology and the diagonal cohomology classes
are Poincaré dual:
PROPOSITION 9.7. Dy n (M] X [M]) = (= 1)"Ayy,.

Proof. Observe that

(b¥x d?™%) n (IM] % IM]) = (= D@Dk (b~ [M]) X (d] "~ [M])
= (= 1)=Pkg]~* x b,

Using the formula for D), given by Proposition 9.2,
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N(k) _
Dy (Ml XM = ¥ (-DF Y (bf xdi ™) n(IM] x [M])

k>0 i=1
N(k)

= Y (= DF Y (- Dk X by
k=0 i=1
N(k)

— (=Y Y (= Dke-Rgl T x bf

k=0 i=1

— (= 1)"A, by Proposition 9.6. [

Until now Y has been an arbitrary parameter space. For what follows we
assume that Y is a closed g-dimensional manifold which is oriented over F.
Let [Y] € H,(Y) be the fundamental class. Define Gr(p):M X Y > M
X YXMand Gr(F):M X Y>> M X Y X M by Gr(p)(m,y) = (m,y, m)
and Gr(F)(m,y) = (m,y, F(m, y)). Define homology classes

A= Gr(p)s((M]X[Y]) € Hyr g(M X YXM,MXYx3M),
B =Gr(F)«((M] X [Y]) € Hyr g M X Y X M,0M X Y X M) .

We define the intersection product A e B € H,(M X Y x M) as follows. Let

S H'"MXYXMOIMXYXM)>H,, q(MXYXM,MXYX3IM)
Syt H'(MX YXM,MXYXOM)> H,,;,(MXYXM,0MXYXM)

be the Poincaré duality isomorphisms for the manifold triad (M X Y X M;
M X Y XOM,dM x Y X M) given by cap product with [M] x [Y] X [M].
Then

AeB=(8{'B)Ud;, ' (A)nI[M]x[Y]x[M].

Definition 9.8. The graph intersection invariant of F is 0'(F)
= (p))«(AeB)e H,(M) where p;:M X Y X M— M is projection to
the first M factor.

Remark 9.9. The graph intersection invariant of F can be obtained
geometrically using transversality. Suppose F has no fixed points on
OM x Y. Then the boundaries of the embedded submanifolds Gr(p)(M X Y)
CMxYxMand Gr(F)(M X Y) C M X Y X M are disjoint and so these
submanifolds may be made transverse via an ambient isotopy of the identity
which leaves a neighborhood of the boundary of M X Y X M (pointwise)
fixed. The set theoretic intersection of the perturbed submanifolds is a closed
orientable manifold of dimension g which we orient using the ‘““intersection
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orientation” taken in the order: the perturbed Gr(p) (Y X M) first followed
by the perturbed Gr(F)(Y X M). By Proposition 11.13 of [D,, § VIII], the
resulting oriented manifold is a cycle representing A e B. Projecting this cycle
to M via p; yields a representative of 0'(F).

The isomorphisms §; ' and 8, ' can be described explicitly using the
slant product. Let (Z;0,Z,0,Z) be a compact oriented manifold triad
and K = 00,Z = 00, Z. Since

(Z—-0,2,0,Z—-K)X(Z—-0,Z,0Z—-K)C(ZXZ,ZXZ~-A),
(Z—-0,2,0,Z-K)X(Z—-0,2,0,Z—-K)C(ZXZ,ZXZ~-ANA)
there are slant product pairings:
H"(Z><Z,Z><Z-A)®HJ-(Z—622,812~K)—/+H"—f'(Z—BIZ,BZZ—K)
H"(Z><Z,Z><Z—A)®Hj(Z—612,622—1()*/*H"‘f(Z—azZ,alZ—K)
By the existence of collars, the inclusions (Z —0,72,0,Z—-K) & (£,0,2)
and (Z-0,7Z,0,Z—-K) S (Z,0,7Z) are homotopy equivalences and so we
obtain pairings:
Hi(ZXZ,Z X Z—A)®Hj(Z,612)—/>H"—J'(Z,622) ,
H(ZXZ,ZXZ—-AN) ® H;(Z,0,7) —/>Hf—f(Z,61Z) .
Let m = dim Z. The inverse to the Poincaré duality isomorphisms

81:H"I(Z,0,Z) > H;(Z,8,Z), 8,(x)=xn([Z] x[Z])
8, H™=I(Z,0,Z) > H;(Z,8,Z), 8,(x) =xn ([Z] X [Z])

are explicitly given by §;'(y)=(-1)mm-NT,,, and &;'(y)
=(-1)mm=-NTy,,, where T, € H"(ZX Z,Z X Z — A) is the Thom class
of Z (see [MS, p. 135]).

PROPOSITION 9.10. 8°(F) = I(F)([Y]).

Proof. Without loss of generality, we may assume Y is connected.
Let S:M X M — M x M be the “interchange map”, i.e. S(x,y) = (», x).
Now S.([M]x [M])=(—1)"[M] x [M] and so by Proposition 9.7,
Ay = Dy 0 Sy (IM] x [M]) = S4(S*(Da) N (IM] X [M])). Hence S (Ay)
= S*(Dy) 0 ([M] x [M]). Using the inverse to the Poincaré duality
1somorphlsm we have TMxM/S,,< (AM) S* (D).

Define F = SoF. Then F=So F. Also note that p = pj o F where
pi:M X M— M is projection to the first factor. From the definition
of I(F),
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I(F)([Y]) = p« (F*(Dy) n (IM]1 X [Y])
= (P« Fx (F*S*@a) ([M x [Y1))
9.11) — (0« (S*(Dy) N Fx(IM] % [Y]))
= (0w (Tagscar/ Sx (Aag) N ([M] X [Y1))
= (075 (Tarsew 0 F (IM1 X [Y]) X Sk (A)

where p{’ is projection to the first “M” factor.
Let ""MXYXM—-MXxMxY and

I" " MXMXYXMXMX YoMXMXXMXMXYXY

be the “interchange maps” given by I'(m,»y, my) = (my,my,y) and
I(my,my,y, Mz, My, y') = (m,, my,ms, My, y,y"). Let I=1"0od xI).
Then I*(Taysxm X Ty) = Tarx yxm and
0'(F) = (p1)+ (67" (B) U 8; ' (A) N (IM] X [Y] X [M]))

= (p)+E7'B) 0 (851 (A) n (IM] x [Y] x [M])))

= (p)« (5, ' (B) N A)
(9.12) = (= 1) (p) s« (Trx yxu/ B) N A)

= (- l)qn(p?)*(TMx yxum O (A X B))

— (= D (D)L (I* (Tarx e X Ty) N (A X B))

= (=D (PD s (Tryxm X Ty N Ix(A X B))

where p} and p} = p] o I are projections to the first “M” factor. We have

I (A) = Gr(p)s (Y] X [M]) = Sx(Ay) X [Y]
I, (B) = Gr(F)« ([Y] X [M]) = Fy(IY] x [M]) X [¥] + B

where [yo] € Ho(Y) is represented by yoe Y and B is a finite
sum of the form (= Y,0;Xxu; with w;eH,(Y), n;>1, and
vie Hy q_n, (M X M,0M x M). 1t follows that:

I4+(A X B) = (-1 DS, (Ay) X ﬁ*([Y] X [M]) X [Y] X [yo]
+ L (=1 aammI S, (Ap) X0 X [Y]X ;.
Since Ty n ([Y] X u;) lies in homology of degree n; > 0,

(P s« (Trrnr X Ty) N (s (Dar) X 0; X [Y] X 1))
= (= D99 (PN (Trrsemr 0 (S (D) X 01)) X (Ty n ([Y] X u;)) =0.
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Using (9.12),

0'(F) = (= 1) (P) s« (Tarxne X Ty 0 I (A X B))

= (=19 (= 1)+ D (pH) o (Tarscnr X Ty) N (S (Aar) X Fr ([¥]
x [M1) X [¥] X [5]))

= (= 1D9(=1)9D s (Tarxae N Sk (Anr) X Fo ([Y] X [M])))
X (Ty N ([Y] X [}’o])))

= (O (Tarwar 0 (S5 (Anr) X Fi (1Y x [MD))) X (I¥6] X [¥o]))
= (D)5 (Tarsns O (S (D) X Fo ([Y] % [M])))
=I(F)(Y]) by ©.11). O

Combining Propositions 9.4 and 9.10 yields:

THEOREM 9.13 (Trace Formula). The graph intersection invariant is
given by:

N(k) _
0'F)= X (- Y binFe(byx[Y]). O
k>0 j=1
Remark. 1t is easy to check that Theorem 9.13 remains valid over a
principal ideal domain R in place of the coefficient field F, provided we
assume that Hy (M; R) is a free R-module.

10. PROOFS OF THEOREMS 1.1 AND 1.5

In this section we prove Theorems 1.1 and 1.5 which assert the equivalence,
under appropriate hypotheses, of the four definitions of the first order Euler
characteristic introduced in §1.

Proof of Theorem 1.1 (ii). Let M be a compact connected oriented PL or
smooth n-manifold with boundary (as well as being the underlying simplicial
complex of a compatible triangulation). Using Definition A;, we are to show
that y; (M) (y) = — 0(y); the case of other coefficient rings R will then
follow immediately. Fattening if necessary, assume n > 4.

Let J: M x I > M be a homotopy from id,, to a map j, such that the
graph of J|,, [%1] meets the graph of p|,, . [%1] transversely in

| x(M) | arcs; this can be achieved by classical techniques of cancelling
unnecessary pairs of fixed points. Note that j will then have precisely
| x, (M) | fixed points, all transverse and having the same fixed point index.
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Denote by F7, the concatenated homotopy J~! % F¥ % J. It is clear that,
using Definition A,, trace(ékHDz) = trace(ékﬂl—)z), since the new
contributions cancel one another. By perturbing rel M x {0, 1}, we may
assume that the graph of FY meets the graph of p transversc::ly, and that
Fix (F*) consists of circles in M x (0, 1) and | x (M) | arcs in M X I joining
M x {0} to M x {1}. It may be assumed (see [GN,, §6(B)]) that F” is
cellular with respect to suitable triangulations of M and M X 1.

If v(M) =0, there are no arcs. In that case, the required geometric
arguments are to be found in [GN,, §6]; and Definitions A; and C,; are
indeed equivalent. (The point is that in [GN,] there is a precise sense in which
contributions to the fixed point set associated with M x {0, 1} are ignored, so
that when such points are present, i.e. when y (M) # 0, something more must
be said, and will now be said.)

Suppose x (M) # 0. F'is a homotopy from j to j. By our constructions,
since j is homotopic to id,, and has the least possible number of transverse
fixed points, all those fixed points are in the same fixed point class, (in the
sense of classical Nielsen fixed point theory [Br], [J]). Moreover, the arcs are
all in the same fixed point class of F in the analogous sense defined
in [GN,]. By symmetry, if an arc meets (x, 0) then an arc meets (x, 1), but
perhaps a different arc. However, since all the arcs are in the same fixed point
class, the methods of [Di] allow us to perturb FY rel M X {0, 1} so that,
for the perturbed map, an arc meeting (x, 0) also meets (x, 1). The arc
B(t) = FY(x,1) is homotopically trivial, for if the arc of fixed points «a
joins (x,0) to (x, 1) then B is homotopic to (FY oa)(poa)-t. Thus the
methods of [Di] allow us to perturb F7 further so that o is replaced by a
circle of fixed points missing M X {0, 1} together with an arc of fixed points
coinciding with B. Thus these arcs contribute zero to 0z (y). So, again,
the argument in [GN,, §6] shows, that Definitions A; and C, are equivalent:
the trace formula in Definition A, describes the homology class of the circles.

Summarizing, we have proved Part (ii) of Theorem 1.1. [

We prove Part (i) of Theorem 1.1 by first showing that Definitions B, and
C, agree when X is a compact oriented manifold. Then, using the already
proved Part (ii), we establish the equivalence of Definitions A, and B;.

The trace formula in Definition B, was introduced by Knill in [Kn]. As we
remarked in §1, it is independent of basis. Moreover, it is a straightforward
exercise to show that it is a homotopy invariant.
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Proof of Theorem 1.1(i). Let X be a finite CW complex, as in §1.
By homotopy invariance of the formulas in A; and B;, we may assume
the attaching maps in X are polyhedral. Therefore we may PL embed X
in some R” as a strong deformation retract of a compact codimension 0
PL submanifold, M, e.g. a regular neighborhood. Now, any FY as
in §1 can be extended to map M X S!—> X S M by precomposing
with r X id where r: M — X is a strong deformation retraction. By
Remark 9.9 and Theorem 9.13, Definitions B; and C; are equivalent
for M. By Theorem 1.1(ii), Definitions A, and C; are equivalent for M.
Hence, using homotopy invariance, Definitions A; and B, are equivalent
for X. [

In [Kn] there also appears an ‘““intersection class”, whose definition we
now recall. (Actually, the context in [Kn] is much more general: we only
extract what we need.)

Throughout the remainder of this section, all homology and cohomology
groups will have coefficients in the principal ideal domain R. Let M
be a compatibly oriented, compact, codimension 0, PL submanifold
i:MSR", Let F:Mx S'— M be such that Fix(F) n M x S! = 0.
Let Mx S'leH,. (M x S'",0M x S!') be the fundamental class of
M x S' and let [R”] be the generator of H,(R”,R” — {0}) determined
by the orientation. Following Leray [Le] and Dold [D;], Knill defines the
intersection class of F to be the image, Izx(F), of [M X S!] under the
following composition:

H,, (M,0M) x S')=> H,,. (M x S',M x S' — Fix(F))

(iop—ioF,F)g
.._)

H,..(R",R" = {0}) x M) > H,(M)

where p: M x S! — M is projection and H,,((R",R" — {0}) X M) 5 H, (M)
is the inverse of the isomorphism H; (M)~ H,. (R",R" — {0}) X M),
y= [R"] X p.

We make use of the following special case of [Kn, Theorem 1]:

THEOREM 10.1. Suppose H,(M) is a free R-module. Then

—Ii(F)= ¥ (= DF1 Y bEn Fo(bh x [S1])
k>0 j

where [S'] € H,(S') is the fundamental class and where for each
k > O,{b;‘ } is a basis for Hi(X) with corresponding dual basis,
{b j" }, for HX(X). The cap product is taken with Dold’s sign con-
vention. [
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Proof of Theorem 1.5. We show — px1(®7)«([S']) coincides with
Definition B;. As in the proof of Theorem 1.1(i) above, we may assume
that X is a compact polyhedron which is PL embedded in some R” as a
strong deformation retract of a compact codimension 0 PL submanifold, M.
Extend ®Y to a map ¥*: M X S! - X S M by precomposing with r X id
where r: M — X is a strong deformation retraction. The homotopy invariance
of Definition B; and Theorem 10.1 imply that — Iz (\I’Yi) = v (X, R) (v).
By [Ds, (3.3)] and [BG, §9], Ix(¥Y) coincides with p.T(® )4 ([S!]). L]
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