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CHAOTIC GROUP ACTIONS

by G. CAIRNS, G. Davis, D. ELTON, A. KOLGANOVA and P. PERVERSI

ABSTRACT. We introduce the notion of chaotic group actions and give
a preliminary report on their properties. In particular, we show that a
group G possesses a faithful chaotic action on some Hausdorff space if and
only if G is residually finite. This gives an elementary unified proof of the
residual finiteness of certain groups. We also show that the circle does not
admit a chaotic action of any group, whilst every smooth compact surface
admits a chaotic Z-action.

1. INTRODUCTION

In recent years an enormous amount of work has been conducted on
chaotic dynamical systems. Most of this work has been concerned with the
iteration of single maps; in other words, with group (or semi-group) actions
of the additive group Z. Now, according to R. Devaney’s [D2] definition
(see also [BBCDS], [GW] and [Si]), a map is chaotic if it is topologically
transitive and if the set of periodic points is dense. The purpose of this present
paper is to introduce the analogous notion for actions of arbitrary groups:

Definition. Suppose that a group G acts continuously on a Hausdorff
topological space M. Then we say that the action of G on M is chaotic if the
following two conditions are met:

(a) topological transitivity: for every pair of non-empty open subsets U
and V of M, there is an element g € G such that g(U) n V # & .

(b) finite orbits dense: the set of points in M whose orbit under G is finite
is a dense subset of M.
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Notice that in condition (b) of the above definition, finite orbits for
general group actions are a direct generalization of periodic orbits for
Z-actions. Phenomena very similar to that of chaotic actions have been
studied for decades, though the word ‘“chaos” was not used. For example,
as P. Eberlein relates on his description [E] of the work on the geodesic
flow in the 1920’s. “The object of most of the works in this period was
to establish topological dynamical properties of the geodesic flow such as
the density of periodic trajectories (= closed geodesics) and the existence
of a dense trajectory (topological transitivity).” Now it can be easily verified
(cf. [BBCDS], [GW] and [Si]) that a chaotic action of a group G on an infinite
metric space M is ‘‘chaotic” in the popular sense that it has sensitive
dependence on initial conditions; that is, there exists 8 > 0 such that for every
open set U in M there exist, x, y € U and g € G such that are g(x) and g(»)
are at least distance & apart.

The basic example of a chaotic action is provided by the linear action
of SL(n,Z) on the torus T”?, for any n > 2. Condition (b) in the above
definition is verified for this action, since the points with rational coordinates
have finite orbit. To see that condition (a) is satisfied, one shows that every
invariant open subset of T” is dense.

In this paper, we provide a collection of observations and questions
concerning chaotic group actions. These actions are not merely an artificial
generalization of chaotic Z actions; as we show in Section 3 below, there
exist chaotic actions of a group G for which the restriction to every one
generator subgroup of G is not chaotic. In our study we do not assume any
differentiability or measure theoretic hypotheses and so our results are all quite
elementary. Nevertheless, as we hope to convince the reader, the structure is
sufficiently rich as to provide a variety of results.

2. CHAOS EQUALS RESIDUAL FINITENESS

Now the two conditions in the above definition of a chaotic action are quite
different in nature. The first condition is an irreducibility condition. The
second condition is just a disguised form of residual finiteness. Indeed,
recall that a group G is said to be residually finite if for every non-identity
element g of G, there is a normal subgroup, not containing g, of finite index
in G. Then one has:

THEOREM 1. For a group G, the following conditions are equivalent:
(a) G is residually finite,
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(b) there is a faithful action of G with finite orbits dense on some
Hausdorff topological space M,

(cj thereis a faithful action of G with all orbits finite on some Hausdorff
topological space M,

(d) there is a faithful chaotic action of G on some Hausdorff topological
space M.

Proof. The proof is particularly simple. Clearly (d) and (c) each imply
(b). We show that (b) implies (a) and that (a) implies (c) and (d).

(b = a). Suppose that a group G acts faithfully with finite orbits dense
on a space M and that g is an element of G, other than the identity element.
Since the set F of points of M with finite orbit under G is dense in M, there
exists a point x € F which is not fixed by g. Let O(x) denote the orbit of x
under G and let H, denote the subgroup of G that fixes O(x) point by point.
Then clearly H, is the required normal subgroup of finite index.

(a = ¢). If Gisresidually finite, then for each non-identity element g € G,
there is a normal finite index subgroup H, that doesn’t contain g. Let M,
denote the quotient space G/H,. Then G acts on M, by left translation. Now
let M be the disjoint union Il . =iaMy, equipped with the discrete topology.
Then G acts faithfully on M and every point has finite orbit, by construction.

(a = d). If G is finite, then G acts chaotically on itself, with the discrete
topology. Suppose that G is infinite and consider the compact product
space {0, 1}¢. The natural action of G on {0, 1}¢ is given by

g(Hx) = flg 'x),

for all g, x e G and f:G—{0,1}. It is an elementary exercise to show
that this action is transitive. Now suppose that G is residually finite.
Let {x;,...,x,} be a finite set of distinct elements of G, choose numbers
Y1y ..., ¥n €10, 1} and consider the open set U of functions f: G — {0, 1}
for which f(x;) = y; for all i. We will show that U contains an element with
finite orbit under G. Notice that since G is residually finite, for every pair of
distinct elements a, b € G, there exists a finite index normal subgroup H
of G such that ¢ and b belong to different cosets of H. It follows that there
exists a finite index normal subgroup K of G such that the elements x; belong
to pairwise distinct cosets of K. Now let f be any function which is constant
on the cosets of K and which takes the value y; on the coset containing x;.
So f e U and clearly f has finite orbit under G. [
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The above theorem is quite useful. For instance, it shows that groups
which act chaotically and faithfully have no infinite simple subgroups
and so, in particular, they cannot themselves be infinite simple groups.
In another direction, the group Q of rational numbers is not residually finite
(see for example [We]) and so Q cannot act chaotically and faithfully.
Other useful well known properties of residually finite groups (see for
example [LS] and [MKS]) include: Finitely generated residually finite groups
are Hopfian; that is, they are not isomorphic to any of their proper quotient
groups. Finitely generated residually finite groups have residually finite
automorphism groups. Finitely presented residually finite groups have solvable
word problem.

In passing, let us remark that the above theorem provides an elementary
and unified manner to prove residual finiteness in many cases:

COROLLARY 1. The following groups are residually finite:
(a) the matrix groups SL(n,Z), forall n>1,
(b) countably generated free groups,
(c) quotients of residually finite groups by finite normal subgroups,
(d) subgroups of residually finite groups,
(e) (finite and infinite) direct products of residually finite groups,
(f) wreath products of residually finite groups by finite groups.

Proof of Corollary 1. The statements in Corollary 1 are well known
(though we haven’t seen (e) in the literature). Part (a) uses the fact
that SL(n,Z) acts with finite orbits dense on T”, as mentioned in the
introduction. Parts (c) and (d) follow immediately from the theorem; indeed,
it is clear that if a group G acts faithfully with all orbits finite on a Hausdorff
space M, then every subgroup of G also acts faithfully with all orbits finite
on M. And if H is a finite normal subgroup, then G/H acts faithfully with
all orbits finite on the Hausdorff orbit space M/H. To see Part (b), one first
recalls that the free group on two generators is a subgroup of SL(2, Z); indeed,
by Sanov’s theorem (see [LS]), the subgroup of SL(2,Z) generated by

the matrices
1 2 1 0
a: " =
o) o)

is isomorphic to the free group Z * Z. So by Part (d), Z * Z is residually finite.
Part (b) then follows from Part (d) again, using the fact that every countably
generated free group is a subgroup of Z * Z. Part (¢) is proved as follows:
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suppose that groups G;,i e I act faithfully with all orbits finite on the
Hausdorff spaces M;,i € I respectively. Now to each space M;, add an
additional isolated element x; and denote M ; the union M; U {x;}. Then we
define an action of G; on M ; by using the action of G; on M; and m~aking X;
a fixed point. Clearly G; acts faithfully with all orbits finite on M;. Now
let M denote the subset of the infinite product [J,_,M; composed of all
elements (y;); < ; for which only finitely many of the y; are different from x;.
We equip M with the topology induced by the product topology. Then clearly
the infinite direct product IJ,_,G; acts faithfully with all orbits finite on M.
Finally Part (f) is similar to Part (e); suppose that a group G acts
chaotically on a space M and that H is a finite group. Then there is a natural
action of the wreath product GWrH on the space M X H, where H is given
the discrete topology (see [H]). It is easy to see that this action is chaotic. [

The following groups are known to be residually finite: Fuchsian
groups [LS], the mapping class groups of compact Riemann surfaces [G],
arithmetic groups [Se] and the group of p-adic integers [We]. It would be
interesting to find natural chaotic actions of these groups.

3. CONSTRUCTIONS OF CHAOTIC GROUP ACTIONS

First recall that there are many examples of chaotic Z-actions; that is,
chaotic homeomorphisms. Perhaps the most basic example is that of the
Anosov diffeomorphisms of tori and infranilmanifolds (see [Sm], [Mann]);
these maps are chaotic since their periodic points are dense [BR] and by
Anosov’s closing lemma (see for instance [Sh]), they are transitive on their
nonwandering set. (The Anosov diffeomorphisms of tori are just the linear
hyperbolic maps; that is, linear maps with no eigenvalues on the unit circle.)
Similarly, the pseudo-Anosov maps of compact surfaces are also chaotic
(see Exposé 9 in [FLP] and the diagrams in [Mafi], pages 111-116).

Let us now give some general results.

THEOREM 2. Consider a Hausdorff space M and the group Hom (M)
of homeomorphisms of M. Then one has:

(a) If there are group inclusions
G < H< K< HomWM)

then the action of H on M is chaotic if the actions of G and K
on M are chaotic.
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(b) If G< H<HomWM) and G has finite index in H and if the action
of G on M is chaotic, then the action of H on M is chaotic.

(c) If M is locally compact and if Hom(M) is given the compact-open
topology, then the action of G_ on M is chaotic if and only if the
action on M of the closure G of G in Hom(M) is chaotic.

Proof. In Part (a), notice that if a point x € M has finite orbit under K,
then x obviously has finite orbit under H. So if the action of K has finite orbits
dense, then the action of H has finite orbits dense. On the other hand, if the
action of G is topologically transitive, then clearly the action of H is also
topologically transitive. So Part (a) holds. Part (b) is similar to Part (a).

In Part (c), again if the action of G has finite orbits dense, then the
action of G has finite orbits dense. Now suppose that the action of G is
topologically transitive. Let U and V be two non-empty open subsets of M.
Then there exists g € G such that g(U) n V is non-empty. Let x be an
element of Un g~-1(V) and let ® be the open subset of G composed of
elements that send x into V. Then g € ® and since G is dense in G, there
exists h € G N ®. So h(U) n V is non-empty and hence the action of G is
topologically transitive.

Conversely, if M is locally compact, then the natural map Hom (M) x M— M
is continuous. So, if a point x € M has finite orbit under G, then since G is
dense in G, one has that G (x) is dense in G(x). Hence é(x) is finite. So if
the action of G has finite orbits dense, then the action of G has finite orbits
dense. Finally, if the action of G is topologically transitive, then obviously so
too is the action of G. [

4. MANIFOLDS THAT ADMIT CHAOTIC GROUP ACTIONS

Chaotic homeomorphisms of the 2-dimensional disc can be constructed as
follows. Starting with any Anosov diffeomorphism of the torus T2, one can
quotient by the map o6:xH — x, to obtain a chaotic homeomorphism on
the sphere S2. (This map was used in [Wa], p. 140 to show that expansiveness
is not preserved under semi-conjugation.) Then, by blowing up the origin
to a circle, one obtains a chaotic homeomorphism on the closed disc.
Unfortunately this latter homeomorphism is not the identity on the boundary.
This can be rectified by making a slight modification of the above
construction. Instead of starting with an Anosov diffeomorphism of T2, one
starts with linked twist map [D1] of the torus T2. A linked twist map is an
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appropriately chosen composition of Dehn twists. Consider the particular
linked twist map f defined as follows: by representing T? as the square with
vertices (+ 1/2, + 1/2), and edges identified in the usual manner, consider the
maps g: T2 — T2 and A:T? — T2 defined by

(x,y+2x+1/2) if|x|<1/4
g(x,y) = .
(x,») otherwise,
(x+2y+1/2,y) if|y|<1/4
h(x,y) = .
(x,») otherwise.

Then set f = g o h. By [D1], the map f is chaotic on the set
M={(xy):|x|<1/4 or |y|<1/4}.

Moreover, f is the identity on the boundary of M. Now, quotienting by the
map o:(x,y)— (—x, —y), one obtains a chaotic homeomorphism f on
the disc D? and by construction f is also the identity on the boundary.

FIGURE 1

Using the above map f, one can clearly obtain chaotic homeomorphisms
on all closed surfaces (orientable or not); one simple constructs the surface by
identifying boundary arcs on the disc in the standard manner and then obtains
the required homeomorphism from f, by semi-conjugacy.
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THEOREM 3. Every compact surface (with or without boundary) admits
a chaotic Z-action (that is, a chaotic homeomorphism).

Now it is folkloric that the circle admits no invertible chaotic dynamical
system. Indeed, we prove that no group acts chaotically on the circle. In fact,
one has:

THEOREM 4. No infinite group acts faithfully with finite orbits dense on
the circle S!.

Proof. 1t is well known and easy to prove that S! admits no chaotic
homeomorphism (see for example [Si]). In fact, one has the following
elementary Lemma, which we give without proof:

LEMMA. Suppose that ¢ is a orientation preserving homeomorphism
of the circle S! having dense periodic points. If & has a fixed point,
then ¢ is the identity.

Now, returning to Theorem 4, suppose that a group G acts faithfully with
finite orbits dense on S!. Then the elements of G all have dense periodic
points. Let x € S! be a point with finite orbit under the action of G. Now let
G be the subgroup of G comprised of the orientation preserving elements
that fix x. By the above Lemma, G, consists only of the identity map.
Hence, since G, is a subgroup of finite index in G, we have that G
is finite. [

By the classical theory of S. Cairns and J. Whitehead (see [KiSi]), every
smooth compact manifold is triangulable and consequently can be constructed
from the closed ball by identification of simplices in its boundary. Given the
proof of Theorem 3 above, the obvious question is:

QUESTION 1. Is there a chaotic homeomorphism of the closed 3-ball B?
which is the identity on the boundary?

The method used in dimension 2 doesn’t seem to generalize to dimen-
sion 3. The 3-ball can be obtained by considering the action of Z, X Z,
on T3, by rotations through © about the x, y and z axes. However, the linked
twist maps on T3 are not respected by this action. The ideas in [BFK]
may be useful here; this paper shows that every compact manifold of
dimension greater than one admits a Bernoulli diffeomorphism. (Bernoulli
diffeomorphisms are ergodic and hence transitive, but they do not all have
dense periodic points.)

Finally, as promised in the introduction, we give the:
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Example. The group G = Z X Z, X Z, acts faithfully and chaotically
on T2 in such a way that none of the elements of G act chaotically on T?
in R. Devaney’s sense.

Proof. First, as described above, there exist chaotic homeomorphisms of
the closed disc (and hence of the closed square) which are the identity on the
boundary. Let f be such a homeomorphism. Now consider T? as the unit
square with vertices (i, j) with i, j € {0, 1} and with edges identified in the usual
manner; that is T2 = R2/Z2. Now use the x and y axes to subdivide T?
into 4 isometric subsquares. Let F be the homeomorphism of T2 obtained
by applying f in each of the 4 subsquares. Let g: T? — T2 be the translation
g(x,y) = (x + 1/2, y). Similarly, define 2 by A(x, y) = (x,y + 1/2). Then the
group G = Z X Z, X Z, generated by F, g and & acts chaotically on T2. But
clearly G contains no element which acts chaotically on T2.

5. OTHER QUESTIONS

In this section we present some open questions which we have been unable
to resolve. The main question is the following:

QUESTION 2. Is there a faithful chaotic action of Z X Z on the torus
T2 or the sphere S??

This question is of interest since in order to further the study of chaotic
actions, one would naturally look to actions, on low dimensional manifolds,
of groups which are simple generalizations of Z. Because of Theorem 4, the
obvious place to start is in dimension 2. Now the group Z X Z(=Z?)
acts chaotically on T#. But it is not clear whether Z?2 acts chaotically and
faithfully on T2. Notice that SL(2, Z) has no subgroup isomorphic to Z2.
Indeed, PSL(2,Z) is a free product Z,*Z; (see [MKS]) and hence by
Kurosh’s theorem (see [LS]), it cannot have Z? as a subgroup. But PSL (2, Z)
is the quotient of SL(2,Z) by the group {+Id} = Z,. So SL(2,Z) cannot
have Z? as a subgroup either.

It follows from the above discussion that if G = Z?2 acts chaotically and
faithfully on T2, then G cannot contain a linear hyperbolic toral auto-
morphism. Indeed, according to [AdPa], if f is a linear hyperbolic toral
automorphism and if g is a homeomorphism of T” which commutes with f,

then g is also a linear toral automorphism. (For more on commuting
diffeomorphisms of tori, see [KaSp].)
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Another general question is:

QUESTION 3. What residually finite groups have a faithful chaotic action
on some smooth connected compact manifold?

Clearly finite groups are residually finite but have no faithful chaotic
actions on any connected compact manifold. On the other hand, if a
group G acts faithfully and chaotically on a compact manifold, then is G
necessarily countable?, finitely generated?, discrete as a subgroup of
Hom (M)?, closed as a subgroup of Hom (M)? These properties hold for the
known examples of chaotic actions constructed from the action of SL (n, Z)
on T”. The properties would seem unlikely to hold in general, but
counterexamples have proved to be elusive. Notice that for a smooth compact
manifold M, a discrete subgroup G < Hom (M) is necessarily countable, since
Hom (M) is second countable. So on smooth compact manifolds one has the
following implications:

finitely generated discrete
Hopfian countable closed

Notice that there is a simple partial result: Every topological group acting
continuously, faithfully and chaotically on a Hausdorff space is totally
pathwise disconnected. To see this, notice that if G C Hom(M) acts
chaotically, then the only continuous paths in G are the constant paths. Indeed,
if v, is a path in G and if x has finite orbit under G, then as y,(x) is a
continuous path in M and as v, (x) belongs to the (finite) orbit of x, so v,(x)
is independent of ¢. (We remark in passing that it is easy to see that every
manifold admits a non-discrete totally pathwise disconnected group of
homeomorphisms.)
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