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forme quadratique / comme / - < 1 > © /'. Alors k(f) F(]/- f'(X')),
où X' (X2}...,Xm) et F k{X'). Supposons qkif) isotrope. Alors

par [4], 2.5.1, on a:

qF=-a<l,f'(X')> ®q' <a> ® q"

Donc a e D{qF) C Dm (q).
D'autre part, <1 ,f'{X')> représente / sur F(Xx) k{Xx, ...,Xm).

Done a<\if'(X')> représente af sur k(Xl9...,Xm). On en déduit

que af e Dm (q). Comme a e Dm (q), on a / e < Dm (q) >

7. Applications

Voici quelques applications du théorème 1 :

Sommes de carrés

Corollaire 1. Soit s un entier positif Si un polynôme f ek[Xl9

est une somme de 2S carrés dans k(Xu Xm), alors tout polynôme
irréductible et unitaire divisant f avec un exposant impair est une somme
de Is carrés dans k{Xx, Xm).

Soit q la forme quadratique somme de 25 carrés. Alors q est une forme
de Pfister, donc D(q) <D(q)> (cf. [4], chap. 2, §10 ou [3], chap. 10,

cor. 1.7). Le corollaire découle de l'implication a) => b) du théorème 1,

appliqué au produit des polynômes irréductibles divisant / avec un exposant
impair.

Le cas m 1 de ce corollaire est dû à Kaplansky (cf. [4], chap. 10,

cor. 2.10).

Principe de Hasse

Soit k un corps de nombres. On note v une place (finie ou infinie) de k,
et kv le complété de k en v. Soit q une forme quadratique anisotrope sur k.

Corollaire 2. Soit f e k[X], Alors

fe <D(qkuiX))> pour toute place u de k & fe <D(qk(X))>

Il est clair que f e <D(qk(x))> ^ f e <D(qkv(X))> pour toute

place v de k.
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Montrons la réciproque. Par le théorème de Hasse-Minkowski (voir

par exemple [4], chap. 6, §6, cor. 6.6a)), si a e k est tel que a e D(qku)

pour toute place u de k, alors a e D(q). Donc, par la partie a) => b) du

théorème 1, on peut supposer que / est irréductible et unitaire.

Supposons que f e <D(qkv{X))> pour toute place u de k. Alors

la partie b) => c) du théorème 1 implique que qku(f) est isotrope pour
toute place u de k. Par le théorème de Hasse-Minkowski (cf. [4], chap. 6, §6,

th. 6.5), on en déduit que qk(f) est isotrope. Donc, par la partie c) => b)
du théorème 1, / 6 D(qk{X)).

Une variante du nombre de Pythagore

Pour tout corps F et pour tout entier 1, on note DF(n) C F*//7*2
l'ensemble des sommes de n carrés d'éléments de F, et <DF(n)> le sous-

groupe deP/P2 engendré par DF(n).
Lorsque F k{Xx, ...,Xm), on note Dm (n) DF{n).
Rappelons que le niveau d'un corps F, noté s (F), est par définition le plus

petit entier tel que -le DF(s). Si - 1 n'est pas une somme de carrés
dans F, alors on pose s(F) oo, et l'on dit que F est formellement réel.

Corollaire 3. Supposons que k soit formellement réel. Soit

f e k[X{, Xm] un polynôme irréductible et unitaire. Alors

fe <Dm(n)>e>s(k(f)) < n

Soit q la forme quadratique somme de n carrés. Comme k est formellement
réel, q est anisotrope. Il est clair que

s(k(f)) < n & qkU) isotrope

Par le corollaire du théorème 1, on a

qk(f) isotrope « / e <Dm(n)>
Ceci démontre le corollaire.
Soit Df{oo)U,7= DP(n). Le nombre de Pythagore de F est le

plus petit entier n tel que DF(n)DF(co). S'il n'existe aucun entier avec
cette propriété, alors on pose p(F) oo.

Notation. On note p'(F) le plus petit entier n tel que <DF(n)>
Df(co). S'il n'existe aucun entier avec cette propriété, alors on pose

p'(F) 00.
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Corollaire 4. Supposons que k soit formellement réel, et que
1. Alorsp'(k(Xx ...,Xm))sup{s(*(/)) + 1, / e A: [AT,

unitaire et irréductible, avec s(k(f)) < 00}

Démonstration. Posons

p'=p'(k(Xl9...9Xm))9
p" sup {s (k(f)) + 1, f e k[Xi, ...,Xm] unitaire et irréductible,

avec s(k(f)) < 00}

Soit / g k[Xi, Xm\ irréductible et unitaire. Si fe<Dm(n)>,
alors par le corollaire 3 on a s(k(f)) < n. Donc p"^p'.
Réciproquement, si s(k(f)) < n alors par le corollaire 3 f e <Dm(n)> pour
tout polynôme irréductible et unitaire de k[X1, ...,Xm}. Pour montrer que

p'^p", il reste donc à démontrer que p'(k)^p". Soit d e k* une
somme de carrés, d $ k*2. Posons f(X) X2 + d e k[X]. Alors / est

un polynôme unitaire et irréductible. On a k(f) k(\/ - d). Supposons

que s(k(f)) n. Alors il existe ai9 an, bx, bn e k tels

que - 1 (ai + b^y^d)2 + + (an + bn]/^d)2. Alors - 1 a\ +
+ a2n - d(b\ + + b2n). Donc d(b2 + + b2)2 (a\ + + a\ + 1)
• (b\ + + b2n). Ceci entraîne que de <Dk(n + 1) >

En utilisant des résultats de Colliot-Thélène et Jannsen [1], on obtient

Corollaire 5. Soient k un corps de nombres réel, X, Y et Z des

variables. Alors

a) p'(k(X)) 2,3 ou 5;

b) p'{k(X, Y)) 2,3 ou 5;

c) p'(k{X, y, Z)) 2, 3, 5 ou 9.

En effet, par [1], th. 4.1, (b) et (c), on voit que s(k(f)) 1, 2, 4 ou 00

si / est un polynôme irréductible et unitaire de k[X] ou k[X, Y] et

s(k(f)) 1,2, 4, 8 ou 00 si / est un polynôme irréductible et unitaire de

k[X, E, Z]. Par le corollaire précédent, ceci démontre l'affirmation.
Le corollaire ci-dessus et les résultats et conjectures de [1] suggèrent la

conjecture suivante:

Conjecture. Soit k un corps de nombres réel, et soient X1} Xm
des variables, m ^ 4. Alors p'{k{X{,..., Xm)) est de la forme

p'(k(Xl,...,Xm)) 2'+ 1

où r e {0, m}.
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Finalement, remarquons que le cas des corps de nombres totalement

imaginaires est beaucoup plus simple :

Proposition. Soit k un corps de nombres totalement imaginaire.

Alors

p'(Jc(Xl,...,Xm)) 2,3 ou 5,

quel que soit m ^ 1.

En effet, si k est totalement imaginaire, alors s(k) 1, 2 ou 4 (voir par

exemple [4], chap. XI). Comme tout élément d'un corps de caractéristique

différente de 2 peut s'écrire comme différence de deux carrés, on a

p(k(Xu ...,Xm)) < 5, quel que soit m. Le lemme suivant montre que

si p(k(Xl9 ...,!«)) 4, alors p'{k(Xi, ATm))< 3, Ceci démontre la

proposition.

Lemme. Soit F un corps de caractéristique différente de 2. Alors

Df(4) C Df(3). Df(3) C <Df(3)>
Soit H (-1, -1) l'algèbre de quaternions de Hamilton sur F. Soit FF

le sous-groupe additif des quaternions purs de H. Notons TV la norme réduite.

Alors N(H) Df(4), N(FF) DF{3). Pour démontrer le lemme, il suffit
donc de vérifier que pour tout a e H, il existe b e Hr tel que ab e FF.
Mais cette condition consiste en une équation linéaire en trois variables,
laquelle a toujours une solution.
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