Zeitschrift: L'Enseignement Mathématique
Herausgeber: Commission Internationale de I'Enseignement Mathématique

Band: 41 (1995)

Heft: 1-2: L'ENSEIGNEMENT MATHEMATIQUE

Artikel: FORMES QUADRATIQUES DEVENANT ISOTROPES SUR UNE
EXTENSION

Autor: Bayer-Fluckiger, Eva

Kapitel: 7. Applications

DOI: https://doi.org/10.5169/seals-61819

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 24.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-61819
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

118 E. BAYER-FLUCKIGER

forme quadratique f comme f = <1> @ f'. Alors k(f) = F()/— f'(X")),
ou X'=(X,,....,X,) et F=k(X’). Supposons g isotrope. Alors
par [4], 2.5.1, on a:

gr=a<l,f'X')>®Dqg =<a>Dq"”.

Donc a € D(gr) C D,,(q).

D’autre part, <1, f'(X')> représente f sur F(X;) = k(X;, ..., Xm).
Donc a <1, f'(X’)> représente af sur k(Xi,...,X,). On en déduit
que af € D, (q). Comme a € D,,(q), ona fe <D, (q)>.

7. APPLICATIONS
Voici quelques applications du théoréeme 1:
SOMMES DE CARRES

COROLLAIRE 1. Soit s un entier positif. Si un polynéme fek[X,, ..., Xu]
est une somme de 25 carrés dans k(X,,...,Xn), alors tout polynéme
irréductible et unitaire divisant [ avec un exposant impair est une somme
de 25 carrés dans k(Xi,...,Xn).

Soit g la forme quadratique somme de 25 carrés. Alors g est une forme
de Pfister, donc D(q) = <D(q)> (cf. [4], chap. 2, §10 ou [3], chap. 10,
cor. 1.7). Le corollaire découle de l’implication a) = b) du théoréme 1,
appliqué au produit des polyndmes irréductibles divisant f avec un exposant
impair.

Le cas m =1 de ce corollaire est dii a Kaplansky (cf. [4], chap. 10,
cor. 2.10).

PRINCIPE DE HASSE
Soit k£ un corps de nombres. On note v une place (finie ou infinie) de k,
et k, le complété de k en v. Soit g une forme quadratique anisotrope sur k.
COROLLAIRE 2. Soit f € k[X]. Alors
f € <D(qr,x))> pour toute place v de k ¢ fe€ <D(qrux)> -

Il est clair que f € <D(qkwx))> = f e <D(qk,x))> pour toute
place v de k.
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Montrons la réciproque. Par le théoréme de Hasse-Minkowski (voir
par exemple [4], chap. 6, §6, cor. 6.6a)), si a € k est tel que a € D(qx,)
pour toute place v de k, alors @ € D(q). Donc, par la partie a) = b) du
théoréme 1, on peut supposer que f est irréductible et unitaire.

Supposons que f € <D(gy,x))> pour toute place v de k. Alors
la partie b) = ¢) du théoréme 1 implique que gg,(s) est isotrope pour
toute place v de k. Par le théoréme de Hasse-Minkowski (cf. [4], chap. 6, §6,
th. 6.5), on en déduit que gy, est isotrope. Donc, par la partie ¢) = b)
du théoréme 1, f € D(gxwx))-

UNE VARIANTE DU NOMBRE DE PYTHAGORE

Pour tout corps F et pour tout entier n > 1, on note Dg(n) C F*/F*?
I’ensemble des sommes de # carrés d’éléments de F, et <Dr(n)> le sous-
groupe de F*/F*2 engendré par Dg(n).

Lorsque F = k(Xy, ..., X)), on note D,,(n) = Dg(n).

Rappelons que le niveau d’un corps F, noté s(F'), est par définition le plus
petit entier s tel que — 1 € Dr(s). Si — 1 n’est pas une somme de carrés
dans F, alors on pose s(F) = o, et ’on dit que F est formellement réel.

COROLLAIRE 3. Supposons que k soit formellement réel. Soit
fek[X,...,X,] un polynéme irréductible et unitaire. Alors

fe<D,m)> & sk(f))<n.

Soit g la forme quadratique somme de » carrés. Comme k est formellement
réel, g est anisotrope. Il est clair que

s(k(f)) <n & gy isotrope .

Par le corollaire du théoréme 1, on a
qk(r) isotrope ¢ fe <D, (n)> .

Ceci démontre le corollaire.
Soit Dp() = U [_| Dp(n). Le nombre de Pythagore p(F) de F est le

plus petit entier n tel que Dr(n) = Dp(o). S’il n’existe aucun entier avec
cette propriété, alors on pose p(F) = oo.

Notation. On note p’(F) le plus petit entier n tel que <Dg(n)>

= Dr(®). S’il n’existe aucun entier avec cette propriété, alors on pose
p'(F) = oo.
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COROLLAIRE 4. Supposons que k soit formellement réel, et que
mz=1. Alors p'(k(Xi,...,Xn) =sup{s(k(f) + 1, feklX,....,Xml
unitaire et irréductible, avec s(k(f)) < «} .

Démonstration. Posons

p, = p’(k(Xls '“aXm)) ’
p"’ =sup{s(k(f)) + 1, f € k[X;, ..., X,,] unitaire et irréductible,
avec s(k(f)) < «}.

Soit f € k[X,, ..., X,,] irréductible et unitaire. Si fe <D, (n)>,
alors par le corollaire 3 on a s(k(f)) < n. Donc p” < p’. Récipro-
quement, si s(k(f)) < n alors par le corollaire 3 f e <D, (n)> pour
tout polyndme irréductible et unitaire de k[X,, ..., X,,]. Pour montrer que
p’ <p”, il reste donc & démontrer que p’'(k) < p’”. Soit d € k* une
somme de carrés, d & k*2. Posons f(X)= X2+ dek[X]. Alors f est
un polyndme unitaire et irréductible. On a k(f) = k(/—d). Suppo-
sons que s(k(f)) =n. Alors il existe ay,...,a,,b;,....,b, €k tels
que —1=(a;+b,)/—d)>+ ...+ (a,+b,)/—d)? Alors —1=a*+ ..
ta,—dbi+ ...+ b2). Donc dbi+ ..+b))2=(a’+..+d>+1)
(b7 + ... +b2). Ceci entraine que d € <Dy (n+1)>.

En utilisant des résultats de Colliot-Théléne et Jannsen [1], on obtient

COROLLAIRE 5. Soient k un corps de nombres réel, X,Y et Z des
variables. Alors
a) p'(k(X)) =2,3 ou 5;

b) p'(k(X,Y)) =2,3 ou 5;
c) p'(k(X,Y,2))=2,3,5 ou 9.

En effet, par [1], th. 4.1, (b) et (c), on voit que s(k(f)) =1,2,4 ou o
si f est un polyndme irréductible et unitaire de A[X] ou k[X, Y] et
s(k(f)) =1,2,4,8 ou o si f est un polyndme irréductible et unitaire de
k[X, Y, Z]. Par le corollaire précédent, ceci démontre 1’affirmation.

Le corollaire ci-dessus et les résultats et conjectures de [1] suggérent la
conjecture suivante:

CONJECTURE. Soit k un corps de nombres réel, et soient X, ..., X,
des variables, m > 4. Alors p’'(k(X,,...,X,)) est de la forme

p k(X1 .o, X)) =27+ 1,

ou rei0,.. m}.
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Finalement, remarquons que le cas des corps de nombres totalement
imaginaires est beaucoup plus simple :

PROPOSITION. Soit k un corps de nombres totalement imaginaire.
Alors

p (k(Xi,...., X)) =2,3 ou 5,
quel que soit m = 1.

En effet, si k est totalement imaginaire, alors s(k) = 1,2 ou 4 (voir par
exemple [4], chap. XI). Comme tout élément d’un corps de caractéristique
différente de 2 peut s’écrire comme différence de deux carreés, on a
pk(X:,...,Xn)) <5, quel que soit m. Le lemme suivant montre que
si p(k(Xy, ..., X)) =4, alors p’(k(X;, ..., X)) <3. Ceci démontre la
proposition.

LEMME. Soit F un corps de caractéristique différente de 2. Alors
Dr(4) CDrQB).Dr(3) C <Dr(3)> .

Soit H = (—1, —1) ’algébre de quaternions de Hamilton sur F. Soit H'
le sous-groupe additif des quaternions purs de AH. Notons NN la norme réduite.
Alors N(H) = Dr(4), N(H") = Dr(3). Pour démontrer le lemme, il suffit
donc de vérifier que pour tout a € H, il existe b € H' tel que ab € H'.
Mais cette condition consiste en une équation linéaire en trois variables,
laquelle a toujours une solution.
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