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Théorème 6. Pour toute forme quadratique q sur k anisotrope et

représentant 1, et tout polynôme irréductible et unitaire f e k[X], on a:

qk{f) est hyperbolique => f e G(qk{X))

Théorème 7 (théorème de la norme de Scharlau). Pour toute forme
quadratique q sur k anisotrope et représentant 1, et toute extension

finie E de k, on a:

NE/k{G(qEj)C
Théorème 8. Pour toute forme quadratique q sur k anisotrope et

représentant1, G(q) contient le groupe <NE/k(E*)> engendré par les

normes des extensions finies E de k telles que qE soit hyperbolique.

Remarque. Gille [2] et Merkurjev [5], [6] ont généralisé certains des

énoncés étudiés dans ce §.

6. Corps de fonctions d'une quadrique

Supposons / homogène de degré 2. Alors / est aussi une forme
quadratique. On suppose que m>2oum 2Qtf anisotrope, ce qui implique
que le polynôme / e k[Xx, Xm] est irréductible. Le corps k(f) est appelé
le corps de zéros générique de la forme quadratique /. C'est aussi le corps des

fonctions de la quadrique (affine) correspondante.
Soit q une forme quadratique anisotrope et représentant 1 sur k.

Remarquons que l'on a les inclusions suivantes:

Gm (q) C Dm (q) C <C.Dm(q)>

Théorème 9. Supposons que la forme quadratique f représente 1.

Alors on a:

a) qk{f) est hyperbolique si et seulement si f e Gm(q);
b) q contient f si et seulement si f g Dm (q);
c) qk(f) est isotrope si et seulement si f g <Dm (q) >

a) est un cas particulier du corollaire du théorème 2 (voir aussi [4], 4.5.3),
b) est le «théorème de la sous-forme» de Pfister (cf. [4], th. 9.2.8), et c) est
un cas particulier du corollaire du théorème 1.

Voici une autre démonstration de c). On montre ici que si qk{f) est
isotrope, alors / g <Dm(q)>, l'autre implication étant facile. Ecrivons la
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forme quadratique / comme / - < 1 > © /'. Alors k(f) F(]/- f'(X')),
où X' (X2}...,Xm) et F k{X'). Supposons qkif) isotrope. Alors

par [4], 2.5.1, on a:

qF=-a<l,f'(X')> ®q' <a> ® q"

Donc a e D{qF) C Dm (q).
D'autre part, <1 ,f'{X')> représente / sur F(Xx) k{Xx, ...,Xm).

Done a<\if'(X')> représente af sur k(Xl9...,Xm). On en déduit

que af e Dm (q). Comme a e Dm (q), on a / e < Dm (q) >

7. Applications

Voici quelques applications du théorème 1 :

Sommes de carrés

Corollaire 1. Soit s un entier positif Si un polynôme f ek[Xl9

est une somme de 2S carrés dans k(Xu Xm), alors tout polynôme
irréductible et unitaire divisant f avec un exposant impair est une somme
de Is carrés dans k{Xx, Xm).

Soit q la forme quadratique somme de 25 carrés. Alors q est une forme
de Pfister, donc D(q) <D(q)> (cf. [4], chap. 2, §10 ou [3], chap. 10,

cor. 1.7). Le corollaire découle de l'implication a) => b) du théorème 1,

appliqué au produit des polynômes irréductibles divisant / avec un exposant
impair.

Le cas m 1 de ce corollaire est dû à Kaplansky (cf. [4], chap. 10,

cor. 2.10).

Principe de Hasse

Soit k un corps de nombres. On note v une place (finie ou infinie) de k,
et kv le complété de k en v. Soit q une forme quadratique anisotrope sur k.

Corollaire 2. Soit f e k[X], Alors

fe <D(qkuiX))> pour toute place u de k & fe <D(qk(X))>

Il est clair que f e <D(qk(x))> ^ f e <D(qkv(X))> pour toute

place v de k.


	6. Corps de fonctions d'une quadrique

