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THEOREME 6. Pour toute forme quadratique q sur k anisotrope et
représentant 1, et tout polynéme irréductible et unitaire f € k[X], on a:

qr(r) est hyperbolique = feG(qrux) -

THEOREME 7 (théoréme de la norme de Scharlau). Pour toute forme
quadratique q sur Kk anisotrope et représentant 1, et toute extension

finie E de k, ona:
Ng/k (G(QE)) C G(q) .

THEOREME 8. Pour toute forme quadratique q sur k anisotrope et
représentant 1, G(q) contient le groupe < Ng,(E*)> engendré par les
normes des extensions finies E de k telles que qr soit hyperbolique.

Remarque. Gille [2] et Merkurjev [5], [6] ont généralisé certains des
énoncés étudiés dans ce §.

6. CORPS DE FONCTIONS D’UNE QUADRIQUE

Supposons f homogéne de degré 2. Alors f est aussi une forme
quadratique. On suppose que m > 2 ou m = 2 et f anisotrope, ce qui implique
que le polyndme f € k[X,, ..., X,,] est irréductible. Le corps k( f) est appelé
le corps de zéros générique de la forme quadratique f. C’est aussi le corps des
fonctions de la quadrique (affine) correspondante.

Soit g une forme quadratique anisotrope et représentant 1 sur k.
Remarquons que 1’on a les inclusions suivantes:

Gm(Q) C Dm(Q) C <Dlﬂ(q)> *

THEOREME 9. Supposons que la forme quadratique f représente 1.
Alors on a:

a) qr est hyperbolique si et seulement si f € G,,(q);
b) q contient f si et seulement si f e D,,(q);
¢) qryy estisotrope si et seulement si f e <D, (q)>.

a) est un cas particulier du corollaire du théoreme 2 (voir aussi [4], 4.5.3),
b) est le «théoreme de la sous-forme» de Pfister (cf. [4], th. 9.2.8), et c) est
un cas particulier du corollaire du théoréeme 1.

Voici une autre démonstration de c). On montre ici que si g, est
isotrope, alors f € <D, (g)>, lautre implication étant facile. Ecrivons la
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forme quadratique f comme f = <1> @ f'. Alors k(f) = F()/— f'(X")),
ou X'=(X,,....,X,) et F=k(X’). Supposons g isotrope. Alors
par [4], 2.5.1, on a:

gr=a<l,f'X')>®Dqg =<a>Dq"”.

Donc a € D(gr) C D,,(q).

D’autre part, <1, f'(X')> représente f sur F(X;) = k(X;, ..., Xm).
Donc a <1, f'(X’)> représente af sur k(Xi,...,X,). On en déduit
que af € D, (q). Comme a € D,,(q), ona fe <D, (q)>.

7. APPLICATIONS
Voici quelques applications du théoréeme 1:
SOMMES DE CARRES

COROLLAIRE 1. Soit s un entier positif. Si un polynéme fek[X,, ..., Xu]
est une somme de 25 carrés dans k(X,,...,Xn), alors tout polynéme
irréductible et unitaire divisant [ avec un exposant impair est une somme
de 25 carrés dans k(Xi,...,Xn).

Soit g la forme quadratique somme de 25 carrés. Alors g est une forme
de Pfister, donc D(q) = <D(q)> (cf. [4], chap. 2, §10 ou [3], chap. 10,
cor. 1.7). Le corollaire découle de l’implication a) = b) du théoréme 1,
appliqué au produit des polyndmes irréductibles divisant f avec un exposant
impair.

Le cas m =1 de ce corollaire est dii a Kaplansky (cf. [4], chap. 10,
cor. 2.10).

PRINCIPE DE HASSE
Soit k£ un corps de nombres. On note v une place (finie ou infinie) de k,
et k, le complété de k en v. Soit g une forme quadratique anisotrope sur k.
COROLLAIRE 2. Soit f € k[X]. Alors
f € <D(qr,x))> pour toute place v de k ¢ fe€ <D(qrux)> -

Il est clair que f € <D(qkwx))> = f e <D(qk,x))> pour toute
place v de k.
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