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En effet, soit E une extension de degré impair de k. Toute extension peut
tre obtenue comme composée d’extensions monogenes. On peut donc
supposer que E est de la forme E = k(f), ou f est un polyndme irréductible
et unitaire de degré impair. Soit ¢ une forme quadratique anisotrope et
représentant 1. Alors tous les polyndmes appartenant & D(q«x)) = D1(q)
sont de degré pair. Donc f n’est pas dans < D;(q)>. Par le corollaire du
théoréme 1, ceci implique que g n’est pas isotrope sur E.

De méme, le théoréme 2 entraine la forme faible du théoréme de Springer:

THEOREME DE SPRINGER (forme faible). Si une forme quadratique
devient hyperbolique sur une extension de degré impair, alors elle est
hyperbolique.

5. EXTENSIONS FINIES
FORMULATIONS EQUIVALENTES DES CRITERES DU §2

On suppose encore que m = 1. Dans ce cas, on obtient des reformulations
intéressantes des critéres du §2, en particulier en termes de «principes de
normes». Le but de ce paragraphe est de faire remarquer que les théorémes
ci-dessous sont équivalents.

Soit ¢ une forme quadratique anisotrope et représentant 1 sur k.

THEOREME 3 (cor. du th. 1). Soit f € k[X] un polynoéme irréductible
et unitaire. On a:

qrs) estisotrope = f € <D(qikux))> .

THEOREME 4 (Théoréme de la norme de Knebusch). Soit E une
extension finie de k. Alors on a:

NE/k(<D(QE)>) C <D(q)> .

THEOREME 5. Le groupe < Ng,(E*)> engendré par les normes des

extensions finies E de k telles que qp soit isotrope est contenu
dans <D(q)>.

Th. 3 = th. 4: Comme g représente 1 sur k, il existe a;,...,a,_, € k*
tels que ¢ = <1,ay,...,a,-,>. Soit a € D(qg). Il existe x, X, ...,x,_, € E
tels que a=x2+a -x{+..+a, -x>_,. Posons a=a, x4

2 ’
+a,_1°x,_;. Alors gp=<1l,a>®qg’, e o=x2+a. Posons
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L = E(VTa). Alors ¢g; est isotrope. On a soit L = E, soit [L:E] = 2.
Posons B = o dans le premier cas, et p = x + |/ —a dans le deuxiéme.
On a alors N,z (B) = a. Soit F = k(B). Notons d = [L : F]. Si d est pair,
alors Ni,k(B) = Np/(B)? est un carré. Donc Ngs(0) = N/ (B)
€ <D(q)>. Supposons que d soit impair. Comme ¢; est isotrope, le théo-
reme de Springer entraine que gr est aussi isotrope. Soit f € k[X] le
polyndme minimal de B sur k. Alors F = k(f). On a donc g (s isotrope.
Par le théoréme 3, ceci entraine f € <D(gxx))>. Comme g est anisotrope
et qr isotrope, par le théoréme de Springer on voit que [F: k] est pair.
On a Np/y(B) = (= DIFAf(0) = £(0). Comme f e <D(qrwx))>, on a
f(0) e <D(q)>. Mais Ng/,(0) = N1k (B) = N/ (B)? = Ngsi (B) (mod k*2).
Donc Ng,(0) € <D(q)>.

Th.4 = th.5: Si qg est isotrope, alors D(gg) = E*/E*2. Par le
théoréme 4,

Ng/ (E*) = Ng/i (<D(gg)>) C <D(q)> .

Th.5 = th. 3: Soit f € k[X] un polynOme irréductible et unitaire. Soit
E = k(f), et posons F = k(X), K = E(X). Soit 0 une racine de f dans E.

Supposons que gxsy = g SOit isotrope. Alors gk est aussi isotrope. On a
X — 0 € K*. Par le théoréeme 5, on a donc

S =Ngr(X—0)e <D(gr)> = <D(qrux))> .

Remarque. Les résultats des deux derniers § montrent que le théoréme de
la norme de Knebusch entraine le théoréme de Springer. Le fait que ces
théorémes de Knebusch et de Springer sont liés a déja été remarqué par Witt,
dans un manuscrit non publié. Je remercie Ina Kersten de m’avoir signalé
I’existence de ce manuscrit de Witt, qui paraitra dans [10].

Remarque. Avec les hypothéses du théoréme 5, on a en fait égalité
entre <D(q)> et le groupe < Ng,(E*)> engendré par les normes des
extensions finies de E de k telles que gy soit isotrope. En effet, il suffit de
démontrer que <D(g)> est contenu dans le groupe engendré par les
< Nz, (E*¥)>. Soit o € D(g). On peut supposer que g = <1l,a> ® q’,
et que a = x2+ a-y? avec x,y € k. Posons E = k(]/_———c;). Alors gg est
isotrope. Or, o = NE/k(x+y1/t-a). Donc on a bien a € Ng/ (E*), d’ou
aussi <D(g)> C Ng/ (E®).

De maniére similaire, on montre que les théorémes 6, 7 et 8 ci-dessous
sont équivalents:
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THEOREME 6. Pour toute forme quadratique q sur k anisotrope et
représentant 1, et tout polynéme irréductible et unitaire f € k[X], on a:

qr(r) est hyperbolique = feG(qrux) -

THEOREME 7 (théoréme de la norme de Scharlau). Pour toute forme
quadratique q sur Kk anisotrope et représentant 1, et toute extension

finie E de k, ona:
Ng/k (G(QE)) C G(q) .

THEOREME 8. Pour toute forme quadratique q sur k anisotrope et
représentant 1, G(q) contient le groupe < Ng,(E*)> engendré par les
normes des extensions finies E de k telles que qr soit hyperbolique.

Remarque. Gille [2] et Merkurjev [5], [6] ont généralisé certains des
énoncés étudiés dans ce §.

6. CORPS DE FONCTIONS D’UNE QUADRIQUE

Supposons f homogéne de degré 2. Alors f est aussi une forme
quadratique. On suppose que m > 2 ou m = 2 et f anisotrope, ce qui implique
que le polyndme f € k[X,, ..., X,,] est irréductible. Le corps k( f) est appelé
le corps de zéros générique de la forme quadratique f. C’est aussi le corps des
fonctions de la quadrique (affine) correspondante.

Soit g une forme quadratique anisotrope et représentant 1 sur k.
Remarquons que 1’on a les inclusions suivantes:

Gm(Q) C Dm(Q) C <Dlﬂ(q)> *

THEOREME 9. Supposons que la forme quadratique f représente 1.
Alors on a:

a) qr est hyperbolique si et seulement si f € G,,(q);
b) q contient f si et seulement si f e D,,(q);
¢) qryy estisotrope si et seulement si f e <D, (q)>.

a) est un cas particulier du corollaire du théoreme 2 (voir aussi [4], 4.5.3),
b) est le «théoreme de la sous-forme» de Pfister (cf. [4], th. 9.2.8), et c) est
un cas particulier du corollaire du théoréeme 1.

Voici une autre démonstration de c). On montre ici que si g, est
isotrope, alors f € <D, (g)>, lautre implication étant facile. Ecrivons la
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