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En effet, soit E une extension de degré impair de k. Toute extension peut

être obtenue comme composée d'extensions monogènes. On peut donc

supposer que E est de la forme E k(f où f est un polynôme irréductible

et unitaire de degré impair. Soit q une forme quadratique anisotrope et

représentant 1. Alors tous les polynômes appartenant à D(qk(X)) E>x(q)

sont de degré pair. Donc / n'est pas dans <D\{q)>. Par le corollaire du

théorème 1, ceci implique que q n'est pas isotrope sur E.

De même, le théorème 2 entraîne la forme faible du théorème de Springer :

Théorème de Springer (forme faible). Si une forme quadratique
devient hyperbolique sur une extension de degré impair, alors elle est

hyperbolique.

5. Extensions finies
FORMULATIONS ÉQUIVALENTES DES CRITÈRES DU §2

On suppose encore que m 1. Dans ce cas, on obtient des reformulations
intéressantes des critères du §2, en particulier en termes de «principes de

normes». Le but de ce paragraphe est de faire remarquer que les théorèmes
ci-dessous sont équivalents.

Soit q une forme quadratique anisotrope et représentant 1 sur k.

Théorème 3 (cor. du th. 1). Soit f e k[X] un polynôme irréductible
et unitaire. On a:

qk(f) est isotrope =* / e <D(qk{X))>

Théorème 4 (Théorème de la norme de Knebusch). Soit E une
extension finie de k. Alors on a:

NE/k(<D(qE)>)C <D(q)>

Théorème 5. Legroupe <NE/k(E*)>engendré par les normes des
extensions finies E de k telles que qE soit isotrope est contenu
dans <D(q)>.

Th. 3 => th. 4: Comme q représente 1 sur il existe a,,..., e k*
tels que q< 1, ax,...,a„_j >. Soit a eD(qE). Il existe eE
tels que a x2 + at x] ++ a„_, • x2„_y.Posons

+ an_yx2n_l. Alors qE-<\,a>@q', et a Posons
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L E(]/- a). Alors qL est isotrope. On a soit L E, soit [L : E] 2.

Posons ß a dans le premier cas, et ß x + ]/- a dans le deuxième.

On a alors NL/E($) a. Soit F fc(ß). Notons d [L :F]. Si d est pair,
alors NL/k(ß) NF/k($)d est un carré. Donc NE/k (a) NL/k (ß)
e <D{q)>. Supposons que d soit impair. Comme qL est isotrope, le théorème

de Springer entraîne que qF est aussi isotrope. Soit f e k[X] le

polynôme minimal de ß sur k. Alors F k(f). On a donc qk(f) isotrope.
Par le théorème 3, ceci entraîne / e <D(qkm) > • Comme q est anisotrope
et qF isotrope, par le théorème de Springer on voit que [F:k] est pair.
On a NF/k($) (- l)[F:/:]/(0) /(0). Comme / e <D(qkm)>> on a

/(0)e <D(q) >. Mais NE/k(a) - NL/k($) NF/k($)d NF/k($) (mod A:*2).

Donc NE/k(a) e <D(q)>.

Th. 4 => th. 5: Si qE est isotrope, alors D(qE) E*/E*2. Par le

théorème 4,

NE/k(E*)=NE/k(<D(qE)>) C <D{q)>
Th. 5 => th. 3: Soit / e k [X] un polynôme irréductible et unitaire. Soit

E k(f et posons F k(X), K E(X). Soit 0 une racine de / dans E.

Supposons que qk{f) qE soit isotrope. Alors qK est aussi isotrope. On a

X - 0 e K*. Par le théorème 5, on a donc

/ Nk/f{X — 0) e < D{qF) > <D{qk^X))> -

Remarque. Les résultats des deux derniers § montrent que le théorème de

la norme de Knebusch entraîne le théorème de Springer. Le fait que ces

théorèmes de Knebusch et de Springer sont liés a déjà été remarqué par Witt,
dans un manuscrit non publié. Je remercie Ina Kersten de m'avoir signalé

l'existence de ce manuscrit de Witt, qui paraîtra dans [10].

Remarque. Avec les hypothèses du théorème 5, on a en fait égalité

entre <D(q)> et le groupe <NE/k{E*)> engendré par les normes des

extensions finies de E de k telles que qE soit isotrope. En effet, il suffit de

démontrer que <D(q)> est contenu dans le groupe engendré par les

<NE/t(E*)>. Soit a e D(q). On peut supposer que q - <1 ,ö> © q\
et que a x2 + a - y2 avec x,y e k. Posons E k(]/- a). Alors qE est

isotrope. Or, a NE/k (x + y]fira). Donc on a bien a e NE/k(E*), d'où
aussi <D(q)> C Ne/Ic(E*).

De manière similaire, on montre que les théorèmes 6, 7 et 8 ci-dessous

sont équivalents:
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Théorème 6. Pour toute forme quadratique q sur k anisotrope et

représentant 1, et tout polynôme irréductible et unitaire f e k[X], on a:

qk{f) est hyperbolique => f e G(qk{X))

Théorème 7 (théorème de la norme de Scharlau). Pour toute forme
quadratique q sur k anisotrope et représentant 1, et toute extension

finie E de k, on a:

NE/k{G(qEj)C
Théorème 8. Pour toute forme quadratique q sur k anisotrope et

représentant1, G(q) contient le groupe <NE/k(E*)> engendré par les

normes des extensions finies E de k telles que qE soit hyperbolique.

Remarque. Gille [2] et Merkurjev [5], [6] ont généralisé certains des

énoncés étudiés dans ce §.

6. Corps de fonctions d'une quadrique

Supposons / homogène de degré 2. Alors / est aussi une forme
quadratique. On suppose que m>2oum 2Qtf anisotrope, ce qui implique
que le polynôme / e k[Xx, Xm] est irréductible. Le corps k(f) est appelé
le corps de zéros générique de la forme quadratique /. C'est aussi le corps des

fonctions de la quadrique (affine) correspondante.
Soit q une forme quadratique anisotrope et représentant 1 sur k.

Remarquons que l'on a les inclusions suivantes:

Gm (q) C Dm (q) C <C.Dm(q)>

Théorème 9. Supposons que la forme quadratique f représente 1.

Alors on a:

a) qk{f) est hyperbolique si et seulement si f e Gm(q);
b) q contient f si et seulement si f g Dm (q);
c) qk(f) est isotrope si et seulement si f g <Dm (q) >

a) est un cas particulier du corollaire du théorème 2 (voir aussi [4], 4.5.3),
b) est le «théorème de la sous-forme» de Pfister (cf. [4], th. 9.2.8), et c) est
un cas particulier du corollaire du théorème 1.

Voici une autre démonstration de c). On montre ici que si qk{f) est
isotrope, alors / g <Dm(q)>, l'autre implication étant facile. Ecrivons la
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