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114 E. BAYER-FLUCKIGER

Il suffit de considérer le cas ou g est anisotrope. Montrons ce lemme
par récurrence sur le nombre de X; qui interviennent dans f et sur degx, (f).
Si f est constant, alors par hypothese f e <D(g)> C <D, (g)>. Le
lemme est donc vrai dans ce cas. Supposons que X, intervienne dans f.
Le polyndbme [f divise ¢q(¢,...,9,), avec ¢; € k[X;,...,Xn ], non
tous divisibles par f. Considérons f et les ¢; comme des polyndmes de
k(X3, ..., Xm)[X1]. Réduisons les ¢, modulo f, et notons (I)i les polyndémes
réduits. Multiplions-les par leur dénominateur commun, lequel est un élément
de k[X;, ..., X,], et soient ¢, ..., §, les polyndmes de k[X, ..., X,,] ainsi
obtenus. On a donc

Jh=q(1,....9,)

avec h, ¢y, ..., 0, € k[X,, ..., X,], et degx, (¢;) < degx, (f). Alors on a
aussi degy, (h) < degx, (f). Par hypothése de récurrence, h € <D, (q)>.
On a donc fe <D, (q)>.

Démonstration du théoreme 1.

a) = c): Comme f e <D, (q)>, le coefficient a du terme de plus
haut degré de f est dans < D(g)>. L’hypothése entraine aussi qu’il existe
Xi, ..o Xs € K[X1,...,Xn]" tels que q(x1),...,q(xs) soient des repré-
sentations primitives de g sur k[X,, ..., X,,], et que ’on ait 1’égalité

S=afi...fr=qx1)...q(xs)

dans kX, ..., X»)*/k(X,,...,Xn)*2. Comme les polyndmes f; sont
irréductibles et distincts, chacun d’entre eux divise 'un des g(x;). En
réduisant x; modulo f;, on obtient un zéro non trivial de g sur k(f;).

c) = b): Comme gy, est isotrope, f; divise une représentation primitive
de g sur k[Xi, ..., Xn]. Par le lemme, f; € <D, (q)>.

b) = a) est trivial.

4. EXTENSIONS FINIES — LE THEOREME DE SPRINGER

Soit m = 1, et notons X = X;. Le corps k(f) est alors une extension
finie de k. Le corollaire du théoréme entraine le théoreme de Springer [8]:

THEOREME DE SPRINGER. Si une forme quadratique devient isotrope sur
une extension de degré impair, alors elle est isotrope.
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En effet, soit E une extension de degré impair de k. Toute extension peut
tre obtenue comme composée d’extensions monogenes. On peut donc
supposer que E est de la forme E = k(f), ou f est un polyndme irréductible
et unitaire de degré impair. Soit ¢ une forme quadratique anisotrope et
représentant 1. Alors tous les polyndmes appartenant & D(q«x)) = D1(q)
sont de degré pair. Donc f n’est pas dans < D;(q)>. Par le corollaire du
théoréme 1, ceci implique que g n’est pas isotrope sur E.

De méme, le théoréme 2 entraine la forme faible du théoréme de Springer:

THEOREME DE SPRINGER (forme faible). Si une forme quadratique
devient hyperbolique sur une extension de degré impair, alors elle est
hyperbolique.

5. EXTENSIONS FINIES
FORMULATIONS EQUIVALENTES DES CRITERES DU §2

On suppose encore que m = 1. Dans ce cas, on obtient des reformulations
intéressantes des critéres du §2, en particulier en termes de «principes de
normes». Le but de ce paragraphe est de faire remarquer que les théorémes
ci-dessous sont équivalents.

Soit ¢ une forme quadratique anisotrope et représentant 1 sur k.

THEOREME 3 (cor. du th. 1). Soit f € k[X] un polynoéme irréductible
et unitaire. On a:

qrs) estisotrope = f € <D(qikux))> .

THEOREME 4 (Théoréme de la norme de Knebusch). Soit E une
extension finie de k. Alors on a:

NE/k(<D(QE)>) C <D(q)> .

THEOREME 5. Le groupe < Ng,(E*)> engendré par les normes des

extensions finies E de k telles que qp soit isotrope est contenu
dans <D(q)>.

Th. 3 = th. 4: Comme g représente 1 sur k, il existe a;,...,a,_, € k*
tels que ¢ = <1,ay,...,a,-,>. Soit a € D(qg). Il existe x, X, ...,x,_, € E
tels que a=x2+a -x{+..+a, -x>_,. Posons a=a, x4

2 ’
+a,_1°x,_;. Alors gp=<1l,a>®qg’, e o=x2+a. Posons
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