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114 E. BAYER-FLUCKIGER

Il suffit de considérer le cas où q est anisotrope. Montrons ce lemme

par récurrence sur le nombre de Xt qui interviennent dans / et sur deg^ (/).
Si / est constant, alors par hypothèse f e <D(q)> C <Dm(q)>. Le
lemme est donc vrai dans ce cas. Supposons que X\ intervienne dans /.
Le polynôme / divise q(§\, 0„), avec 0/ e k\Xx, Xm], non
tous divisibles par /. Considérons / et les 0/ comme des polynômes de

k(X2, ...,Xm) [X{]. Réduisons les 0/ modulo /, et notons 0, les polynômes
réduits. Multiplions-les par leur dénominateur commun, lequel est un élément
de k[X2,...,Xm], et soient 0J, ...,0^ les polynômes de k[XÏ9 ...,Xm] ainsi
obtenus. On a donc

fh q(<$>[, 0;)
avec h, 0J, 0; e k[X{, ...,Xm], et deg^ (0,') < deg^ (/). Alors on a

aussi degXl(h) < degXl(f). Par hypothèse de récurrence, h e <Dm{q)>.
On a donc / e <Dm{q)>.

Démonstration du théorème 1.

a) => c): Comme / e <Dm(q)>, le coefficient a du terme de plus
haut degré de / est dans <D{q)>. L'hypothèse entraîne aussi qu'il existe

X\, xs e k[X\, Xm]n tels que q(xi)9 q(xs) soient des

représentations primitives de q sur k[X1, Xm], et que l'on ait l'égalité

/ afx ...fr q(x 1)... q(xs)

dans k(Xi, ...,Xm)*/k(Xi9 ...,Xm)*2. Comme les polynômes // sont
irréductibles et distincts, chacun d'entre eux divise l'un des q(xj). En
réduisant Xj modulo /, on obtient un zéro non trivial de q sur k{ft).

c) => b): Comme qki/o est isotrope, // divise une représentation primitive
de q sur k[X1, ...,Xm]. Par le lemme, fi e <Dm{q)>.

b) => a) est trivial.

4. Extensions finies - le théorème de Springer

Soit m 1, et notons X X\. Le corps k(f) est alors une extension

finie de k. Le corollaire du théorème entraîne le théorème de Springer [8]:

Théorème de Springer. Si une forme quadratique devient isotrope sur
une extension de degré impair, alors elle est isotrope.
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En effet, soit E une extension de degré impair de k. Toute extension peut

être obtenue comme composée d'extensions monogènes. On peut donc

supposer que E est de la forme E k(f où f est un polynôme irréductible

et unitaire de degré impair. Soit q une forme quadratique anisotrope et

représentant 1. Alors tous les polynômes appartenant à D(qk(X)) E>x(q)

sont de degré pair. Donc / n'est pas dans <D\{q)>. Par le corollaire du

théorème 1, ceci implique que q n'est pas isotrope sur E.

De même, le théorème 2 entraîne la forme faible du théorème de Springer :

Théorème de Springer (forme faible). Si une forme quadratique
devient hyperbolique sur une extension de degré impair, alors elle est

hyperbolique.

5. Extensions finies
FORMULATIONS ÉQUIVALENTES DES CRITÈRES DU §2

On suppose encore que m 1. Dans ce cas, on obtient des reformulations
intéressantes des critères du §2, en particulier en termes de «principes de

normes». Le but de ce paragraphe est de faire remarquer que les théorèmes
ci-dessous sont équivalents.

Soit q une forme quadratique anisotrope et représentant 1 sur k.

Théorème 3 (cor. du th. 1). Soit f e k[X] un polynôme irréductible
et unitaire. On a:

qk(f) est isotrope =* / e <D(qk{X))>

Théorème 4 (Théorème de la norme de Knebusch). Soit E une
extension finie de k. Alors on a:

NE/k(<D(qE)>)C <D(q)>

Théorème 5. Legroupe <NE/k(E*)>engendré par les normes des
extensions finies E de k telles que qE soit isotrope est contenu
dans <D(q)>.

Th. 3 => th. 4: Comme q représente 1 sur il existe a,,..., e k*
tels que q< 1, ax,...,a„_j >. Soit a eD(qE). Il existe eE
tels que a x2 + at x] ++ a„_, • x2„_y.Posons

+ an_yx2n_l. Alors qE-<\,a>@q', et a Posons
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