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Les propriétés suivantes sont équivalentes:
a) fe <D,(q)>;
b) ae <D(q)> et fie <D,(q)> pour fout i=1,...,r;
c) ae <D(q)> et quy, estisotrope pour fout i=1,...,r.

En particulier, on a:

COROLLAIRE. Soit f € k[X4,...,Xn] irréductible et unitaire. Alors
f e <D,(q)> sietseulement si Q) est isotrope.

Remarquons qu’il y a une forte analogie entre le théoreme 1 et le résultat
suivant de Knebusch [3]:

THEOREME 2. Soit q une forme quadratique anisotrope qui repré-
sente 1. Soit f € k[Xi,...,Xn], et soient ac€k*, fieklX, vees Xm]
irréductibles, unitaires et distincts tels que f = af;... fr.

Les propriétés suivantes sont équivalentes:
a) feGn(q);
b) ae G(q) et fie Gn(q) pourtout i=1,..,r;
c) ae G(q) et quy, est hyperbolique pour tout i=1,...,r.

COROLLAIRE. Soit f € k[X,, ...,Xn] irréductible et unitaire. Alors
f € G,(q) sietseulement si gy est hyperbolique.

Remarque. Si q est une forme de Pfister, alors les théoremes 1 et 2 sont
équivalents. En effet, une forme de Pfister est isotrope si et seulement si elle
est hyperbolique (voir par exemple [7], chap. 2, §10 ou [4], chap. 10, §1),
et les groupes G(qgg) et <D(qgg)> coincident pour toute extension E de k.

3. DEMONSTRATION DU THEOREME 1

Soit f € k[X,, ..., X,»]. On dit que f est normé (par rapport a q) si le
coefficient du terme de plus haut degré de f appartient a <D(q)>.

Une représentation primitive de q sur k[Xy, ..., X,,] est un polyndme de
la forme g(¢;, ..., d,), avec ¢; € k[ X, ..., X,,] premiers entre eux dans leur
ensemble.

LEMME. Soit fek[Xi,...,Xn] un polynéme irréductible et
normé. Supposons que f divise une représentation primitive de ¢
sur k[X,...,X,]. Alors fe <D,(q)>.
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Il suffit de considérer le cas ou g est anisotrope. Montrons ce lemme
par récurrence sur le nombre de X; qui interviennent dans f et sur degx, (f).
Si f est constant, alors par hypothese f e <D(g)> C <D, (g)>. Le
lemme est donc vrai dans ce cas. Supposons que X, intervienne dans f.
Le polyndbme [f divise ¢q(¢,...,9,), avec ¢; € k[X;,...,Xn ], non
tous divisibles par f. Considérons f et les ¢; comme des polyndmes de
k(X3, ..., Xm)[X1]. Réduisons les ¢, modulo f, et notons (I)i les polyndémes
réduits. Multiplions-les par leur dénominateur commun, lequel est un élément
de k[X;, ..., X,], et soient ¢, ..., §, les polyndmes de k[X, ..., X,,] ainsi
obtenus. On a donc

Jh=q(1,....9,)

avec h, ¢y, ..., 0, € k[X,, ..., X,], et degx, (¢;) < degx, (f). Alors on a
aussi degy, (h) < degx, (f). Par hypothése de récurrence, h € <D, (q)>.
On a donc fe <D, (q)>.

Démonstration du théoreme 1.

a) = c): Comme f e <D, (q)>, le coefficient a du terme de plus
haut degré de f est dans < D(g)>. L’hypothése entraine aussi qu’il existe
Xi, ..o Xs € K[X1,...,Xn]" tels que q(x1),...,q(xs) soient des repré-
sentations primitives de g sur k[X,, ..., X,,], et que ’on ait 1’égalité

S=afi...fr=qx1)...q(xs)

dans kX, ..., X»)*/k(X,,...,Xn)*2. Comme les polyndmes f; sont
irréductibles et distincts, chacun d’entre eux divise 'un des g(x;). En
réduisant x; modulo f;, on obtient un zéro non trivial de g sur k(f;).

c) = b): Comme gy, est isotrope, f; divise une représentation primitive
de g sur k[Xi, ..., Xn]. Par le lemme, f; € <D, (q)>.

b) = a) est trivial.

4. EXTENSIONS FINIES — LE THEOREME DE SPRINGER

Soit m = 1, et notons X = X;. Le corps k(f) est alors une extension
finie de k. Le corollaire du théoréme entraine le théoreme de Springer [8]:

THEOREME DE SPRINGER. Si une forme quadratique devient isotrope sur
une extension de degré impair, alors elle est isotrope.
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