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112 E. BAYER-FLUCKIGER

Pour toute forme quadratique q, on note G(q) C £*//:*2 le groupe des

multiplicateurs de similitude de q\

G(q) {a e k*/k*2 \ a q — q}

Soit D{q) C k*/k*2 l'ensemble des éléments représentés par q, c'est-

à-dire l'ensemble des a e k*/k*2 tels qu'il existe v e V avec q(o) a.

Remarquons que si q représente 1, alors G(q) C D(q).
Soit <D{q)> le sous-groupe de /:*//:*2 engendré par D(q). (Ce groupe

est égal au groupe des normes spinorielles de q (voir par exemple [4], p. 109),

mais cette interprétation ne jouera aucun rôle dans la suite).
Soient ax, ar e k*, et posons ax, ar> — < 1, a{ > (x) (x)

<1 ,ar>. C'est une forme à 2r variables, appelée la r-forme de Pfister
associée à ax,

Si q est une forme de Pfister, alors G(q) D(q) <D(q)>
(cf. [7], chap. 2, §10 ou [4], chap. 10, cor. 1.7).

2. Critères

Soit k[Xx, Xm] l'anneau des polynômes à m variables sur k. On
ordonne les monômes de k\Xx, Xm] par l'ordre lexicographique. On dit
que f e k[Xi9 est unitaire si le coefficient du terme de plus haut
degré de / est égal à 1.

Si / est irréductible, on note k(f) le corps des fractions de
k\X\, Xm\/(/).

Soit q une forme anisotrope de dimension n. On s'intéressera aux
extensions E k(f) de k sur lesquelles q devient isotrope. Si qE est isotrope,
alors il en est de même de a • qE, pour tout a e k*. On peut donc supposer
que q représente 1.

Soient Gm(q) G(qkiXl>_Xm)), Dm{q) D(qk(Xl>^fXm)), et

<Dm(q)> <D(qk{X ^j)>.
Le théorème 1 et son corollaire sont des reformulations de résultats de

Witt [9]:

Théorème 1. Soit q une forme quadratique anisotrope qui représente

1. Soit f e k[Xi,Xm\ et soient a e k*, ft e k[Xx,..., Xm\
irréductiblesunitaires et distincts tels que f afx... fr.



FORMES QUADRATIQUES ISOTROPES 113

Les propriétés suivantes sont équivalentes:

a) fe <Dm{q)>;
b) a e <D(q)> et fi<Dm(q)> pour tout i=l
c) a e <D(q) >et qkUl)estisotrope pour tout

En particulier, on a:

Corollaire. Soit fek[Xu Xm]irréductibleet unitaire. Alors

f e <Dm(q)> si et seulement si qk{f) est isotrope.

Remarquons qu'il y a une forte analogie entre le théorème 1 et le résultat

suivant de Knebusch [3] :

Théorème 2. Soit q une forme quadratique anisotrope qui représente

1. Soit f e k[X\,Xm\, et soient aek*,fik [Xl9,..,Xm]
irréductibles, unitaires et distincts tels que f af\... fr.

Les propriétés suivantes sont équivalentes :

a) f e Gm(q);

b) a e G(q) et fi e Gm(q) pour tout i 1, r;
c) a e G(q) et qk{fi} est hyperbolique pour tout i 1, r.

Corollaire. Soit f e k\Xx, Xm\ irréductible et unitaire. Alors

f e Gm(q) si et seulement si qkif) est hyperbolique.

Remarque. Si q est une forme de Pfister, alors les théorèmes 1 et 2 sont

équivalents. En effet, une forme de Pfister est isotrope si et seulement si elle

est hyperbolique (voir par exemple [7], chap. 2, §10 ou [4], chap. 10, §1),
et les groupes G(qE) et <D(qE)> coïncident pour toute extension E de k.

3. Démonstration du théorème 1

Soit f e k[Xi, ...,Xm]. On dit que f est normé (par rapport à q) si le

coefficient du terme de plus haut degré de / appartient à <D(q)>.
Une représentation primitive de q sur k[X\, Xm] est un polynôme de

la forme q(<\>\, (()„), avec e k[Xi, ...,Xm] premiers entre eux dans leur
ensemble.

Lemme. Soit f e k[Xi,Xm] un polynôme irréductible et
normé. Supposons que f divise une représentation primitive de q
sur k[X{, ...,Xm]. Alors fe<Dm(q)>.
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