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112 E. BAYER-FLUCKIGER

Pour toute forme quadratique g, on note G(q) C k*/k*? le groupe des
multiplicateurs de similitude de q:

G(q) ={aek*/k**|a.q=q}.

Soit D(qg) C k*/k*? ’ensemble des éléments représentés par g, c’est-
a-dire ’ensemble des o € k*/k*? tels qu’il existe v € V avec q(v) = a.

Remarquons que si g représente 1, alors G(q) C D(q).

Soit < D(q)> le sous-groupe de k*/k*? engendré par D(q). (Ce groupe
est égal au groupe des normes spinorielles de g (voir par exemple [4], p. 109),
mais cette interprétation ne jouera aucun role dans la suite).

Soient a;,...,a,€ k*, et posons <a;,...a,> =<1,a,> &K ...
<1l,a,>. C’est une forme a 2" variables, appelée la r-forme de Pfister
associée a a,, ..., a,. ‘

Si g est une forme de Pfister, alors G(gqg) = D(qg) = <D(q)>
(cf. [71, chap. 2, §10 ou [4], chap. 10, cor. 1.7).

2. CRITERES

Soit k[Xy,...,X,] ’anneau des polynémes & m variables sur k. On
ordonne les mondémes de k[X], ..., X,,] par Pordre lexicographique. On dit
que f e k[X,, ..., X, ] est unitaire si le coefficient du terme de plus haut

degré de f est égal a 1.

Si f est irréductible, on note k(f) le corps des fractions de
K[Xi, ..., Xn1/(S).

Soit g une forme anisotrope de dimension n. On s’intéressera aux
extensions £ = k(f) de k sur lesquelles g devient isotrope. Si g est isotrope,
alors il en est de méme de a - gg, pour tout a € k*. On peut donc supposer
que q représente 1.

Soient Gn(q) = G(Grx,,...x)) D, (q) = D(qrx,,...x,n)s et
<D,(q)> = <D(Grx,,..,x,))>-
Le théoréme 1 et son corollaire sont des reformulations de résultats de

Witt [9]:

THEOREME 1. Soit q une forme quadratique anisotrope qui repré-
sente 1. Soit fek[X,,...,Xn] et soient aek*, fiek[X,,...,Xm]
irréductibles, unitaires et distincts tels que f=af,... f,.
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Les propriétés suivantes sont équivalentes:
a) fe <D,(q)>;
b) ae <D(q)> et fie <D,(q)> pour fout i=1,...,r;
c) ae <D(q)> et quy, estisotrope pour fout i=1,...,r.

En particulier, on a:

COROLLAIRE. Soit f € k[X4,...,Xn] irréductible et unitaire. Alors
f e <D,(q)> sietseulement si Q) est isotrope.

Remarquons qu’il y a une forte analogie entre le théoreme 1 et le résultat
suivant de Knebusch [3]:

THEOREME 2. Soit q une forme quadratique anisotrope qui repré-
sente 1. Soit f € k[Xi,...,Xn], et soient ac€k*, fieklX, vees Xm]
irréductibles, unitaires et distincts tels que f = af;... fr.

Les propriétés suivantes sont équivalentes:
a) feGn(q);
b) ae G(q) et fie Gn(q) pourtout i=1,..,r;
c) ae G(q) et quy, est hyperbolique pour tout i=1,...,r.

COROLLAIRE. Soit f € k[X,, ...,Xn] irréductible et unitaire. Alors
f € G,(q) sietseulement si gy est hyperbolique.

Remarque. Si q est une forme de Pfister, alors les théoremes 1 et 2 sont
équivalents. En effet, une forme de Pfister est isotrope si et seulement si elle
est hyperbolique (voir par exemple [7], chap. 2, §10 ou [4], chap. 10, §1),
et les groupes G(qgg) et <D(qgg)> coincident pour toute extension E de k.

3. DEMONSTRATION DU THEOREME 1

Soit f € k[X,, ..., X,»]. On dit que f est normé (par rapport a q) si le
coefficient du terme de plus haut degré de f appartient a <D(q)>.

Une représentation primitive de q sur k[Xy, ..., X,,] est un polyndme de
la forme g(¢;, ..., d,), avec ¢; € k[ X, ..., X,,] premiers entre eux dans leur
ensemble.

LEMME. Soit fek[Xi,...,Xn] un polynéme irréductible et
normé. Supposons que f divise une représentation primitive de ¢
sur k[X,...,X,]. Alors fe <D,(q)>.
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