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FORMES QUADRATIQUES DEVENANT ISOTROPES
SUR UNE EXTENSION

par Eva BAYER-FLUCKIGER

INTRODUCTION

Soit k un corps de caractéristique # 2. Soit ¢ une forme quadratique
anisotrope sur k. Si E est une extension de k, on note gr la forme qua-
dratique obtenue par extension des scalaires a E. On dit que g devient
isotrope sur E si la forme g5 est isotrope.

Soit k[X;, ..., X,,] Panneau des polynOémes a m variables sur k. Soit
f ek[X,,...,X,,] un polyndme irréductible, et notons k(f) le corps des
fractions de k[Xy, ..., X,,]/(f). Le but de cette note est de présenter un
critere nécessaire et suffisant pour que g devienne isotrope sur k(f), et d’en
donner quelques applications. Sous une forme légérement différente, ce critére
avait été obtenu par Witt [9].

Je remercie T.Y. Lam, A. Merkurjev, A. Pfister et J.-P. Tignol pour leurs
remarques sur des versions précédentes de ce travail.

1. RAPPELS ET NOTATIONS (voir [4] ou [7])

Toutes les formes quadratiques considérées sont supposées non dégé-
nérées. Pour a,,...,a, € k*, on note <ay,...,a,> la forme quadratique
ai X2+ ...+ a,X?:. On dit qu’une forme quadratique q: V — K est isotrope
s’il existe x € V, x # 0, tel que g(x) = 0. Sinon, on dit qu’elle est anisotrope.
Par exemple, le plan hyperboliqgue H = <1, — 1> est isotrope.

Siq’ et g” sont deux formes quadratiques, on note g’ @ ¢’ leur somme
orthogonale. On dit que la forme quadratique g contient q’ s’il existe
une forme quadratique g”’ telle que g = g’ @ q”’ .

Si q est isotrope, alors g contient au moins un plan hyperbolique. On dit

que g est une forme hyperbolique (ou forme neutre) si ¢ est une somme
orthogonale de plans hyperboliques.
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Pour toute forme quadratique g, on note G(q) C k*/k*? le groupe des
multiplicateurs de similitude de q:

G(q) ={aek*/k**|a.q=q}.

Soit D(qg) C k*/k*? ’ensemble des éléments représentés par g, c’est-
a-dire ’ensemble des o € k*/k*? tels qu’il existe v € V avec q(v) = a.

Remarquons que si g représente 1, alors G(q) C D(q).

Soit < D(q)> le sous-groupe de k*/k*? engendré par D(q). (Ce groupe
est égal au groupe des normes spinorielles de g (voir par exemple [4], p. 109),
mais cette interprétation ne jouera aucun role dans la suite).

Soient a;,...,a,€ k*, et posons <a;,...a,> =<1,a,> &K ...
<1l,a,>. C’est une forme a 2" variables, appelée la r-forme de Pfister
associée a a,, ..., a,. ‘

Si g est une forme de Pfister, alors G(gqg) = D(qg) = <D(q)>
(cf. [71, chap. 2, §10 ou [4], chap. 10, cor. 1.7).

2. CRITERES

Soit k[Xy,...,X,] ’anneau des polynémes & m variables sur k. On
ordonne les mondémes de k[X], ..., X,,] par Pordre lexicographique. On dit
que f e k[X,, ..., X, ] est unitaire si le coefficient du terme de plus haut

degré de f est égal a 1.

Si f est irréductible, on note k(f) le corps des fractions de
K[Xi, ..., Xn1/(S).

Soit g une forme anisotrope de dimension n. On s’intéressera aux
extensions £ = k(f) de k sur lesquelles g devient isotrope. Si g est isotrope,
alors il en est de méme de a - gg, pour tout a € k*. On peut donc supposer
que q représente 1.

Soient Gn(q) = G(Grx,,...x)) D, (q) = D(qrx,,...x,n)s et
<D,(q)> = <D(Grx,,..,x,))>-
Le théoréme 1 et son corollaire sont des reformulations de résultats de

Witt [9]:

THEOREME 1. Soit q une forme quadratique anisotrope qui repré-
sente 1. Soit fek[X,,...,Xn] et soient aek*, fiek[X,,...,Xm]
irréductibles, unitaires et distincts tels que f=af,... f,.
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Les propriétés suivantes sont équivalentes:
a) fe <D,(q)>;
b) ae <D(q)> et fie <D,(q)> pour fout i=1,...,r;
c) ae <D(q)> et quy, estisotrope pour fout i=1,...,r.

En particulier, on a:

COROLLAIRE. Soit f € k[X4,...,Xn] irréductible et unitaire. Alors
f e <D,(q)> sietseulement si Q) est isotrope.

Remarquons qu’il y a une forte analogie entre le théoreme 1 et le résultat
suivant de Knebusch [3]:

THEOREME 2. Soit q une forme quadratique anisotrope qui repré-
sente 1. Soit f € k[Xi,...,Xn], et soient ac€k*, fieklX, vees Xm]
irréductibles, unitaires et distincts tels que f = af;... fr.

Les propriétés suivantes sont équivalentes:
a) feGn(q);
b) ae G(q) et fie Gn(q) pourtout i=1,..,r;
c) ae G(q) et quy, est hyperbolique pour tout i=1,...,r.

COROLLAIRE. Soit f € k[X,, ...,Xn] irréductible et unitaire. Alors
f € G,(q) sietseulement si gy est hyperbolique.

Remarque. Si q est une forme de Pfister, alors les théoremes 1 et 2 sont
équivalents. En effet, une forme de Pfister est isotrope si et seulement si elle
est hyperbolique (voir par exemple [7], chap. 2, §10 ou [4], chap. 10, §1),
et les groupes G(qgg) et <D(qgg)> coincident pour toute extension E de k.

3. DEMONSTRATION DU THEOREME 1

Soit f € k[X,, ..., X,»]. On dit que f est normé (par rapport a q) si le
coefficient du terme de plus haut degré de f appartient a <D(q)>.

Une représentation primitive de q sur k[Xy, ..., X,,] est un polyndme de
la forme g(¢;, ..., d,), avec ¢; € k[ X, ..., X,,] premiers entre eux dans leur
ensemble.

LEMME. Soit fek[Xi,...,Xn] un polynéme irréductible et
normé. Supposons que f divise une représentation primitive de ¢
sur k[X,...,X,]. Alors fe <D,(q)>.
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Il suffit de considérer le cas ou g est anisotrope. Montrons ce lemme
par récurrence sur le nombre de X; qui interviennent dans f et sur degx, (f).
Si f est constant, alors par hypothese f e <D(g)> C <D, (g)>. Le
lemme est donc vrai dans ce cas. Supposons que X, intervienne dans f.
Le polyndbme [f divise ¢q(¢,...,9,), avec ¢; € k[X;,...,Xn ], non
tous divisibles par f. Considérons f et les ¢; comme des polyndmes de
k(X3, ..., Xm)[X1]. Réduisons les ¢, modulo f, et notons (I)i les polyndémes
réduits. Multiplions-les par leur dénominateur commun, lequel est un élément
de k[X;, ..., X,], et soient ¢, ..., §, les polyndmes de k[X, ..., X,,] ainsi
obtenus. On a donc

Jh=q(1,....9,)

avec h, ¢y, ..., 0, € k[X,, ..., X,], et degx, (¢;) < degx, (f). Alors on a
aussi degy, (h) < degx, (f). Par hypothése de récurrence, h € <D, (q)>.
On a donc fe <D, (q)>.

Démonstration du théoreme 1.

a) = c): Comme f e <D, (q)>, le coefficient a du terme de plus
haut degré de f est dans < D(g)>. L’hypothése entraine aussi qu’il existe
Xi, ..o Xs € K[X1,...,Xn]" tels que q(x1),...,q(xs) soient des repré-
sentations primitives de g sur k[X,, ..., X,,], et que ’on ait 1’égalité

S=afi...fr=qx1)...q(xs)

dans kX, ..., X»)*/k(X,,...,Xn)*2. Comme les polyndmes f; sont
irréductibles et distincts, chacun d’entre eux divise 'un des g(x;). En
réduisant x; modulo f;, on obtient un zéro non trivial de g sur k(f;).

c) = b): Comme gy, est isotrope, f; divise une représentation primitive
de g sur k[Xi, ..., Xn]. Par le lemme, f; € <D, (q)>.

b) = a) est trivial.

4. EXTENSIONS FINIES — LE THEOREME DE SPRINGER

Soit m = 1, et notons X = X;. Le corps k(f) est alors une extension
finie de k. Le corollaire du théoréme entraine le théoreme de Springer [8]:

THEOREME DE SPRINGER. Si une forme quadratique devient isotrope sur
une extension de degré impair, alors elle est isotrope.
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En effet, soit E une extension de degré impair de k. Toute extension peut
tre obtenue comme composée d’extensions monogenes. On peut donc
supposer que E est de la forme E = k(f), ou f est un polyndme irréductible
et unitaire de degré impair. Soit ¢ une forme quadratique anisotrope et
représentant 1. Alors tous les polyndmes appartenant & D(q«x)) = D1(q)
sont de degré pair. Donc f n’est pas dans < D;(q)>. Par le corollaire du
théoréme 1, ceci implique que g n’est pas isotrope sur E.

De méme, le théoréme 2 entraine la forme faible du théoréme de Springer:

THEOREME DE SPRINGER (forme faible). Si une forme quadratique
devient hyperbolique sur une extension de degré impair, alors elle est
hyperbolique.

5. EXTENSIONS FINIES
FORMULATIONS EQUIVALENTES DES CRITERES DU §2

On suppose encore que m = 1. Dans ce cas, on obtient des reformulations
intéressantes des critéres du §2, en particulier en termes de «principes de
normes». Le but de ce paragraphe est de faire remarquer que les théorémes
ci-dessous sont équivalents.

Soit ¢ une forme quadratique anisotrope et représentant 1 sur k.

THEOREME 3 (cor. du th. 1). Soit f € k[X] un polynoéme irréductible
et unitaire. On a:

qrs) estisotrope = f € <D(qikux))> .

THEOREME 4 (Théoréme de la norme de Knebusch). Soit E une
extension finie de k. Alors on a:

NE/k(<D(QE)>) C <D(q)> .

THEOREME 5. Le groupe < Ng,(E*)> engendré par les normes des

extensions finies E de k telles que qp soit isotrope est contenu
dans <D(q)>.

Th. 3 = th. 4: Comme g représente 1 sur k, il existe a;,...,a,_, € k*
tels que ¢ = <1,ay,...,a,-,>. Soit a € D(qg). Il existe x, X, ...,x,_, € E
tels que a=x2+a -x{+..+a, -x>_,. Posons a=a, x4

2 ’
+a,_1°x,_;. Alors gp=<1l,a>®qg’, e o=x2+a. Posons
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L = E(VTa). Alors ¢g; est isotrope. On a soit L = E, soit [L:E] = 2.
Posons B = o dans le premier cas, et p = x + |/ —a dans le deuxiéme.
On a alors N,z (B) = a. Soit F = k(B). Notons d = [L : F]. Si d est pair,
alors Ni,k(B) = Np/(B)? est un carré. Donc Ngs(0) = N/ (B)
€ <D(q)>. Supposons que d soit impair. Comme ¢; est isotrope, le théo-
reme de Springer entraine que gr est aussi isotrope. Soit f € k[X] le
polyndme minimal de B sur k. Alors F = k(f). On a donc g (s isotrope.
Par le théoréme 3, ceci entraine f € <D(gxx))>. Comme g est anisotrope
et qr isotrope, par le théoréme de Springer on voit que [F: k] est pair.
On a Np/y(B) = (= DIFAf(0) = £(0). Comme f e <D(qrwx))>, on a
f(0) e <D(q)>. Mais Ng/,(0) = N1k (B) = N/ (B)? = Ngsi (B) (mod k*2).
Donc Ng,(0) € <D(q)>.

Th.4 = th.5: Si qg est isotrope, alors D(gg) = E*/E*2. Par le
théoréme 4,

Ng/ (E*) = Ng/i (<D(gg)>) C <D(q)> .

Th.5 = th. 3: Soit f € k[X] un polynOme irréductible et unitaire. Soit
E = k(f), et posons F = k(X), K = E(X). Soit 0 une racine de f dans E.

Supposons que gxsy = g SOit isotrope. Alors gk est aussi isotrope. On a
X — 0 € K*. Par le théoréeme 5, on a donc

S =Ngr(X—0)e <D(gr)> = <D(qrux))> .

Remarque. Les résultats des deux derniers § montrent que le théoréme de
la norme de Knebusch entraine le théoréme de Springer. Le fait que ces
théorémes de Knebusch et de Springer sont liés a déja été remarqué par Witt,
dans un manuscrit non publié. Je remercie Ina Kersten de m’avoir signalé
I’existence de ce manuscrit de Witt, qui paraitra dans [10].

Remarque. Avec les hypothéses du théoréme 5, on a en fait égalité
entre <D(q)> et le groupe < Ng,(E*)> engendré par les normes des
extensions finies de E de k telles que gy soit isotrope. En effet, il suffit de
démontrer que <D(g)> est contenu dans le groupe engendré par les
< Nz, (E*¥)>. Soit o € D(g). On peut supposer que g = <1l,a> ® q’,
et que a = x2+ a-y? avec x,y € k. Posons E = k(]/_———c;). Alors gg est
isotrope. Or, o = NE/k(x+y1/t-a). Donc on a bien a € Ng/ (E*), d’ou
aussi <D(g)> C Ng/ (E®).

De maniére similaire, on montre que les théorémes 6, 7 et 8 ci-dessous
sont équivalents:
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THEOREME 6. Pour toute forme quadratique q sur k anisotrope et
représentant 1, et tout polynéme irréductible et unitaire f € k[X], on a:

qr(r) est hyperbolique = feG(qrux) -

THEOREME 7 (théoréme de la norme de Scharlau). Pour toute forme
quadratique q sur Kk anisotrope et représentant 1, et toute extension

finie E de k, ona:
Ng/k (G(QE)) C G(q) .

THEOREME 8. Pour toute forme quadratique q sur k anisotrope et
représentant 1, G(q) contient le groupe < Ng,(E*)> engendré par les
normes des extensions finies E de k telles que qr soit hyperbolique.

Remarque. Gille [2] et Merkurjev [5], [6] ont généralisé certains des
énoncés étudiés dans ce §.

6. CORPS DE FONCTIONS D’UNE QUADRIQUE

Supposons f homogéne de degré 2. Alors f est aussi une forme
quadratique. On suppose que m > 2 ou m = 2 et f anisotrope, ce qui implique
que le polyndme f € k[X,, ..., X,,] est irréductible. Le corps k( f) est appelé
le corps de zéros générique de la forme quadratique f. C’est aussi le corps des
fonctions de la quadrique (affine) correspondante.

Soit g une forme quadratique anisotrope et représentant 1 sur k.
Remarquons que 1’on a les inclusions suivantes:

Gm(Q) C Dm(Q) C <Dlﬂ(q)> *

THEOREME 9. Supposons que la forme quadratique f représente 1.
Alors on a:

a) qr est hyperbolique si et seulement si f € G,,(q);
b) q contient f si et seulement si f e D,,(q);
¢) qryy estisotrope si et seulement si f e <D, (q)>.

a) est un cas particulier du corollaire du théoreme 2 (voir aussi [4], 4.5.3),
b) est le «théoreme de la sous-forme» de Pfister (cf. [4], th. 9.2.8), et c) est
un cas particulier du corollaire du théoréeme 1.

Voici une autre démonstration de c). On montre ici que si g, est
isotrope, alors f € <D, (g)>, lautre implication étant facile. Ecrivons la
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forme quadratique f comme f = <1> @ f'. Alors k(f) = F()/— f'(X")),
ou X'=(X,,....,X,) et F=k(X’). Supposons g isotrope. Alors
par [4], 2.5.1, on a:

gr=a<l,f'X')>®Dqg =<a>Dq"”.

Donc a € D(gr) C D,,(q).

D’autre part, <1, f'(X')> représente f sur F(X;) = k(X;, ..., Xm).
Donc a <1, f'(X’)> représente af sur k(Xi,...,X,). On en déduit
que af € D, (q). Comme a € D,,(q), ona fe <D, (q)>.

7. APPLICATIONS
Voici quelques applications du théoréeme 1:
SOMMES DE CARRES

COROLLAIRE 1. Soit s un entier positif. Si un polynéme fek[X,, ..., Xu]
est une somme de 25 carrés dans k(X,,...,Xn), alors tout polynéme
irréductible et unitaire divisant [ avec un exposant impair est une somme
de 25 carrés dans k(Xi,...,Xn).

Soit g la forme quadratique somme de 25 carrés. Alors g est une forme
de Pfister, donc D(q) = <D(q)> (cf. [4], chap. 2, §10 ou [3], chap. 10,
cor. 1.7). Le corollaire découle de l’implication a) = b) du théoréme 1,
appliqué au produit des polyndmes irréductibles divisant f avec un exposant
impair.

Le cas m =1 de ce corollaire est dii a Kaplansky (cf. [4], chap. 10,
cor. 2.10).

PRINCIPE DE HASSE
Soit k£ un corps de nombres. On note v une place (finie ou infinie) de k,
et k, le complété de k en v. Soit g une forme quadratique anisotrope sur k.
COROLLAIRE 2. Soit f € k[X]. Alors
f € <D(qr,x))> pour toute place v de k ¢ fe€ <D(qrux)> -

Il est clair que f € <D(qkwx))> = f e <D(qk,x))> pour toute
place v de k.
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Montrons la réciproque. Par le théoréme de Hasse-Minkowski (voir
par exemple [4], chap. 6, §6, cor. 6.6a)), si a € k est tel que a € D(qx,)
pour toute place v de k, alors @ € D(q). Donc, par la partie a) = b) du
théoréme 1, on peut supposer que f est irréductible et unitaire.

Supposons que f € <D(gy,x))> pour toute place v de k. Alors
la partie b) = ¢) du théoréme 1 implique que gg,(s) est isotrope pour
toute place v de k. Par le théoréme de Hasse-Minkowski (cf. [4], chap. 6, §6,
th. 6.5), on en déduit que gy, est isotrope. Donc, par la partie ¢) = b)
du théoréme 1, f € D(gxwx))-

UNE VARIANTE DU NOMBRE DE PYTHAGORE

Pour tout corps F et pour tout entier n > 1, on note Dg(n) C F*/F*?
I’ensemble des sommes de # carrés d’éléments de F, et <Dr(n)> le sous-
groupe de F*/F*2 engendré par Dg(n).

Lorsque F = k(Xy, ..., X)), on note D,,(n) = Dg(n).

Rappelons que le niveau d’un corps F, noté s(F'), est par définition le plus
petit entier s tel que — 1 € Dr(s). Si — 1 n’est pas une somme de carrés
dans F, alors on pose s(F) = o, et ’on dit que F est formellement réel.

COROLLAIRE 3. Supposons que k soit formellement réel. Soit
fek[X,...,X,] un polynéme irréductible et unitaire. Alors

fe<D,m)> & sk(f))<n.

Soit g la forme quadratique somme de » carrés. Comme k est formellement
réel, g est anisotrope. Il est clair que

s(k(f)) <n & gy isotrope .

Par le corollaire du théoréme 1, on a
qk(r) isotrope ¢ fe <D, (n)> .

Ceci démontre le corollaire.
Soit Dp() = U [_| Dp(n). Le nombre de Pythagore p(F) de F est le

plus petit entier n tel que Dr(n) = Dp(o). S’il n’existe aucun entier avec
cette propriété, alors on pose p(F) = oo.

Notation. On note p’(F) le plus petit entier n tel que <Dg(n)>

= Dr(®). S’il n’existe aucun entier avec cette propriété, alors on pose
p'(F) = oo.
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COROLLAIRE 4. Supposons que k soit formellement réel, et que
mz=1. Alors p'(k(Xi,...,Xn) =sup{s(k(f) + 1, feklX,....,Xml
unitaire et irréductible, avec s(k(f)) < «} .

Démonstration. Posons

p, = p’(k(Xls '“aXm)) ’
p"’ =sup{s(k(f)) + 1, f € k[X;, ..., X,,] unitaire et irréductible,
avec s(k(f)) < «}.

Soit f € k[X,, ..., X,,] irréductible et unitaire. Si fe <D, (n)>,
alors par le corollaire 3 on a s(k(f)) < n. Donc p” < p’. Récipro-
quement, si s(k(f)) < n alors par le corollaire 3 f e <D, (n)> pour
tout polyndme irréductible et unitaire de k[X,, ..., X,,]. Pour montrer que
p’ <p”, il reste donc & démontrer que p’'(k) < p’”. Soit d € k* une
somme de carrés, d & k*2. Posons f(X)= X2+ dek[X]. Alors f est
un polyndme unitaire et irréductible. On a k(f) = k(/—d). Suppo-
sons que s(k(f)) =n. Alors il existe ay,...,a,,b;,....,b, €k tels
que —1=(a;+b,)/—d)>+ ...+ (a,+b,)/—d)? Alors —1=a*+ ..
ta,—dbi+ ...+ b2). Donc dbi+ ..+b))2=(a’+..+d>+1)
(b7 + ... +b2). Ceci entraine que d € <Dy (n+1)>.

En utilisant des résultats de Colliot-Théléne et Jannsen [1], on obtient

COROLLAIRE 5. Soient k un corps de nombres réel, X,Y et Z des
variables. Alors
a) p'(k(X)) =2,3 ou 5;

b) p'(k(X,Y)) =2,3 ou 5;
c) p'(k(X,Y,2))=2,3,5 ou 9.

En effet, par [1], th. 4.1, (b) et (c), on voit que s(k(f)) =1,2,4 ou o
si f est un polyndme irréductible et unitaire de A[X] ou k[X, Y] et
s(k(f)) =1,2,4,8 ou o si f est un polyndme irréductible et unitaire de
k[X, Y, Z]. Par le corollaire précédent, ceci démontre 1’affirmation.

Le corollaire ci-dessus et les résultats et conjectures de [1] suggérent la
conjecture suivante:

CONJECTURE. Soit k un corps de nombres réel, et soient X, ..., X,
des variables, m > 4. Alors p’'(k(X,,...,X,)) est de la forme

p k(X1 .o, X)) =27+ 1,

ou rei0,.. m}.
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Finalement, remarquons que le cas des corps de nombres totalement
imaginaires est beaucoup plus simple :

PROPOSITION. Soit k un corps de nombres totalement imaginaire.
Alors

p (k(Xi,...., X)) =2,3 ou 5,
quel que soit m = 1.

En effet, si k est totalement imaginaire, alors s(k) = 1,2 ou 4 (voir par
exemple [4], chap. XI). Comme tout élément d’un corps de caractéristique
différente de 2 peut s’écrire comme différence de deux carreés, on a
pk(X:,...,Xn)) <5, quel que soit m. Le lemme suivant montre que
si p(k(Xy, ..., X)) =4, alors p’(k(X;, ..., X)) <3. Ceci démontre la
proposition.

LEMME. Soit F un corps de caractéristique différente de 2. Alors
Dr(4) CDrQB).Dr(3) C <Dr(3)> .

Soit H = (—1, —1) ’algébre de quaternions de Hamilton sur F. Soit H'
le sous-groupe additif des quaternions purs de AH. Notons NN la norme réduite.
Alors N(H) = Dr(4), N(H") = Dr(3). Pour démontrer le lemme, il suffit
donc de vérifier que pour tout a € H, il existe b € H' tel que ab € H'.
Mais cette condition consiste en une équation linéaire en trois variables,
laquelle a toujours une solution.
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