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L'Enseignement Mathématique, t. 41 (1995), p. 111-122

FORMES QUADRATIQUES DEVENANT ISOTROPES

SUR UNE EXTENSION

par Eva Bayer-Fluckiger

Introduction

Soit k un corps de caractéristique =£ 2. Soit q une forme quadratique

anisotrope sur k. Si E est une extension de k, on note qE la forme
quadratique obtenue par extension des scalaires à E. On dit que q devient

isotrope sur E si la forme qE est isotrope.
Soit k[Xi, Xm] l'anneau des polynômes à m variables sur k. Soit

/ e k[Xu ...,Xm\ un polynôme irréductible, et notons &(/) le corps des

fractions de k[Xls Xm]/(f). Le but de cette note est de présenter un
critère nécessaire et suffisant pour que q devienne isotrope sur k{f et d'en
donner quelques applications. Sous une forme légèrement différente, ce critère
avait été obtenu par Witt [9].

Je remercie T. Y. Lam, A. Merkurjev, A. Pfister et J.-P. Tignol pour leurs

remarques sur des versions précédentes de ce travail.

1. Rappels et notations (voir [4] ou [7])

Toutes les formes quadratiques considérées sont supposées non
dégénérées. Pour ßi, ...,an e k*, on note <a{, ...,an> la forme quadratique
a\X\ + + anX\. On dit qu'une forme quadratique q: V-> K est isotrope
s'il existe x e V, x 4= 0, tel que q(x) 0. Sinon, on dit qu'elle est anisotrope.
Par exemple, le plan hyperbolique H < 1, - 1 > est isotrope.

Si q' et qrt sont deux formes quadratiques, on note q' © q" leur somme
orthogonale. On dit que la forme quadratique q contient q' s'il existe
une forme quadratique q" telle que q - q' © q"

Si q est isotrope, alors q contient au moins un plan hyperbolique. On dit
que q est une forme hyperbolique (ou forme neutre) si q est une somme
orthogonale de plans hyperboliques.
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Pour toute forme quadratique q, on note G(q) C £*//:*2 le groupe des

multiplicateurs de similitude de q\

G(q) {a e k*/k*2 \ a q — q}

Soit D{q) C k*/k*2 l'ensemble des éléments représentés par q, c'est-

à-dire l'ensemble des a e k*/k*2 tels qu'il existe v e V avec q(o) a.

Remarquons que si q représente 1, alors G(q) C D(q).
Soit <D{q)> le sous-groupe de /:*//:*2 engendré par D(q). (Ce groupe

est égal au groupe des normes spinorielles de q (voir par exemple [4], p. 109),

mais cette interprétation ne jouera aucun rôle dans la suite).
Soient ax, ar e k*, et posons ax, ar> — < 1, a{ > (x) (x)

<1 ,ar>. C'est une forme à 2r variables, appelée la r-forme de Pfister
associée à ax,

Si q est une forme de Pfister, alors G(q) D(q) <D(q)>
(cf. [7], chap. 2, §10 ou [4], chap. 10, cor. 1.7).

2. Critères

Soit k[Xx, Xm] l'anneau des polynômes à m variables sur k. On
ordonne les monômes de k\Xx, Xm] par l'ordre lexicographique. On dit
que f e k[Xi9 est unitaire si le coefficient du terme de plus haut
degré de / est égal à 1.

Si / est irréductible, on note k(f) le corps des fractions de
k\X\, Xm\/(/).

Soit q une forme anisotrope de dimension n. On s'intéressera aux
extensions E k(f) de k sur lesquelles q devient isotrope. Si qE est isotrope,
alors il en est de même de a • qE, pour tout a e k*. On peut donc supposer
que q représente 1.

Soient Gm(q) G(qkiXl>_Xm)), Dm{q) D(qk(Xl>^fXm)), et

<Dm(q)> <D(qk{X ^j)>.
Le théorème 1 et son corollaire sont des reformulations de résultats de

Witt [9]:

Théorème 1. Soit q une forme quadratique anisotrope qui représente

1. Soit f e k[Xi,Xm\ et soient a e k*, ft e k[Xx,..., Xm\
irréductiblesunitaires et distincts tels que f afx... fr.
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Les propriétés suivantes sont équivalentes:

a) fe <Dm{q)>;
b) a e <D(q)> et fi<Dm(q)> pour tout i=l
c) a e <D(q) >et qkUl)estisotrope pour tout

En particulier, on a:

Corollaire. Soit fek[Xu Xm]irréductibleet unitaire. Alors

f e <Dm(q)> si et seulement si qk{f) est isotrope.

Remarquons qu'il y a une forte analogie entre le théorème 1 et le résultat

suivant de Knebusch [3] :

Théorème 2. Soit q une forme quadratique anisotrope qui représente

1. Soit f e k[X\,Xm\, et soient aek*,fik [Xl9,..,Xm]
irréductibles, unitaires et distincts tels que f af\... fr.

Les propriétés suivantes sont équivalentes :

a) f e Gm(q);

b) a e G(q) et fi e Gm(q) pour tout i 1, r;
c) a e G(q) et qk{fi} est hyperbolique pour tout i 1, r.

Corollaire. Soit f e k\Xx, Xm\ irréductible et unitaire. Alors

f e Gm(q) si et seulement si qkif) est hyperbolique.

Remarque. Si q est une forme de Pfister, alors les théorèmes 1 et 2 sont

équivalents. En effet, une forme de Pfister est isotrope si et seulement si elle

est hyperbolique (voir par exemple [7], chap. 2, §10 ou [4], chap. 10, §1),
et les groupes G(qE) et <D(qE)> coïncident pour toute extension E de k.

3. Démonstration du théorème 1

Soit f e k[Xi, ...,Xm]. On dit que f est normé (par rapport à q) si le

coefficient du terme de plus haut degré de / appartient à <D(q)>.
Une représentation primitive de q sur k[X\, Xm] est un polynôme de

la forme q(<\>\, (()„), avec e k[Xi, ...,Xm] premiers entre eux dans leur
ensemble.

Lemme. Soit f e k[Xi,Xm] un polynôme irréductible et
normé. Supposons que f divise une représentation primitive de q
sur k[X{, ...,Xm]. Alors fe<Dm(q)>.
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Il suffit de considérer le cas où q est anisotrope. Montrons ce lemme

par récurrence sur le nombre de Xt qui interviennent dans / et sur deg^ (/).
Si / est constant, alors par hypothèse f e <D(q)> C <Dm(q)>. Le
lemme est donc vrai dans ce cas. Supposons que X\ intervienne dans /.
Le polynôme / divise q(§\, 0„), avec 0/ e k\Xx, Xm], non
tous divisibles par /. Considérons / et les 0/ comme des polynômes de

k(X2, ...,Xm) [X{]. Réduisons les 0/ modulo /, et notons 0, les polynômes
réduits. Multiplions-les par leur dénominateur commun, lequel est un élément
de k[X2,...,Xm], et soient 0J, ...,0^ les polynômes de k[XÏ9 ...,Xm] ainsi
obtenus. On a donc

fh q(<$>[, 0;)
avec h, 0J, 0; e k[X{, ...,Xm], et deg^ (0,') < deg^ (/). Alors on a

aussi degXl(h) < degXl(f). Par hypothèse de récurrence, h e <Dm{q)>.
On a donc / e <Dm{q)>.

Démonstration du théorème 1.

a) => c): Comme / e <Dm(q)>, le coefficient a du terme de plus
haut degré de / est dans <D{q)>. L'hypothèse entraîne aussi qu'il existe

X\, xs e k[X\, Xm]n tels que q(xi)9 q(xs) soient des

représentations primitives de q sur k[X1, Xm], et que l'on ait l'égalité

/ afx ...fr q(x 1)... q(xs)

dans k(Xi, ...,Xm)*/k(Xi9 ...,Xm)*2. Comme les polynômes // sont
irréductibles et distincts, chacun d'entre eux divise l'un des q(xj). En
réduisant Xj modulo /, on obtient un zéro non trivial de q sur k{ft).

c) => b): Comme qki/o est isotrope, // divise une représentation primitive
de q sur k[X1, ...,Xm]. Par le lemme, fi e <Dm{q)>.

b) => a) est trivial.

4. Extensions finies - le théorème de Springer

Soit m 1, et notons X X\. Le corps k(f) est alors une extension

finie de k. Le corollaire du théorème entraîne le théorème de Springer [8]:

Théorème de Springer. Si une forme quadratique devient isotrope sur
une extension de degré impair, alors elle est isotrope.
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En effet, soit E une extension de degré impair de k. Toute extension peut

être obtenue comme composée d'extensions monogènes. On peut donc

supposer que E est de la forme E k(f où f est un polynôme irréductible

et unitaire de degré impair. Soit q une forme quadratique anisotrope et

représentant 1. Alors tous les polynômes appartenant à D(qk(X)) E>x(q)

sont de degré pair. Donc / n'est pas dans <D\{q)>. Par le corollaire du

théorème 1, ceci implique que q n'est pas isotrope sur E.

De même, le théorème 2 entraîne la forme faible du théorème de Springer :

Théorème de Springer (forme faible). Si une forme quadratique
devient hyperbolique sur une extension de degré impair, alors elle est

hyperbolique.

5. Extensions finies
FORMULATIONS ÉQUIVALENTES DES CRITÈRES DU §2

On suppose encore que m 1. Dans ce cas, on obtient des reformulations
intéressantes des critères du §2, en particulier en termes de «principes de

normes». Le but de ce paragraphe est de faire remarquer que les théorèmes
ci-dessous sont équivalents.

Soit q une forme quadratique anisotrope et représentant 1 sur k.

Théorème 3 (cor. du th. 1). Soit f e k[X] un polynôme irréductible
et unitaire. On a:

qk(f) est isotrope =* / e <D(qk{X))>

Théorème 4 (Théorème de la norme de Knebusch). Soit E une
extension finie de k. Alors on a:

NE/k(<D(qE)>)C <D(q)>

Théorème 5. Legroupe <NE/k(E*)>engendré par les normes des
extensions finies E de k telles que qE soit isotrope est contenu
dans <D(q)>.

Th. 3 => th. 4: Comme q représente 1 sur il existe a,,..., e k*
tels que q< 1, ax,...,a„_j >. Soit a eD(qE). Il existe eE
tels que a x2 + at x] ++ a„_, • x2„_y.Posons

+ an_yx2n_l. Alors qE-<\,a>@q', et a Posons
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L E(]/- a). Alors qL est isotrope. On a soit L E, soit [L : E] 2.

Posons ß a dans le premier cas, et ß x + ]/- a dans le deuxième.

On a alors NL/E($) a. Soit F fc(ß). Notons d [L :F]. Si d est pair,
alors NL/k(ß) NF/k($)d est un carré. Donc NE/k (a) NL/k (ß)
e <D{q)>. Supposons que d soit impair. Comme qL est isotrope, le théorème

de Springer entraîne que qF est aussi isotrope. Soit f e k[X] le

polynôme minimal de ß sur k. Alors F k(f). On a donc qk(f) isotrope.
Par le théorème 3, ceci entraîne / e <D(qkm) > • Comme q est anisotrope
et qF isotrope, par le théorème de Springer on voit que [F:k] est pair.
On a NF/k($) (- l)[F:/:]/(0) /(0). Comme / e <D(qkm)>> on a

/(0)e <D(q) >. Mais NE/k(a) - NL/k($) NF/k($)d NF/k($) (mod A:*2).

Donc NE/k(a) e <D(q)>.

Th. 4 => th. 5: Si qE est isotrope, alors D(qE) E*/E*2. Par le

théorème 4,

NE/k(E*)=NE/k(<D(qE)>) C <D{q)>
Th. 5 => th. 3: Soit / e k [X] un polynôme irréductible et unitaire. Soit

E k(f et posons F k(X), K E(X). Soit 0 une racine de / dans E.

Supposons que qk{f) qE soit isotrope. Alors qK est aussi isotrope. On a

X - 0 e K*. Par le théorème 5, on a donc

/ Nk/f{X — 0) e < D{qF) > <D{qk^X))> -

Remarque. Les résultats des deux derniers § montrent que le théorème de

la norme de Knebusch entraîne le théorème de Springer. Le fait que ces

théorèmes de Knebusch et de Springer sont liés a déjà été remarqué par Witt,
dans un manuscrit non publié. Je remercie Ina Kersten de m'avoir signalé

l'existence de ce manuscrit de Witt, qui paraîtra dans [10].

Remarque. Avec les hypothèses du théorème 5, on a en fait égalité

entre <D(q)> et le groupe <NE/k{E*)> engendré par les normes des

extensions finies de E de k telles que qE soit isotrope. En effet, il suffit de

démontrer que <D(q)> est contenu dans le groupe engendré par les

<NE/t(E*)>. Soit a e D(q). On peut supposer que q - <1 ,ö> © q\
et que a x2 + a - y2 avec x,y e k. Posons E k(]/- a). Alors qE est

isotrope. Or, a NE/k (x + y]fira). Donc on a bien a e NE/k(E*), d'où
aussi <D(q)> C Ne/Ic(E*).

De manière similaire, on montre que les théorèmes 6, 7 et 8 ci-dessous

sont équivalents:
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Théorème 6. Pour toute forme quadratique q sur k anisotrope et

représentant 1, et tout polynôme irréductible et unitaire f e k[X], on a:

qk{f) est hyperbolique => f e G(qk{X))

Théorème 7 (théorème de la norme de Scharlau). Pour toute forme
quadratique q sur k anisotrope et représentant 1, et toute extension

finie E de k, on a:

NE/k{G(qEj)C
Théorème 8. Pour toute forme quadratique q sur k anisotrope et

représentant1, G(q) contient le groupe <NE/k(E*)> engendré par les

normes des extensions finies E de k telles que qE soit hyperbolique.

Remarque. Gille [2] et Merkurjev [5], [6] ont généralisé certains des

énoncés étudiés dans ce §.

6. Corps de fonctions d'une quadrique

Supposons / homogène de degré 2. Alors / est aussi une forme
quadratique. On suppose que m>2oum 2Qtf anisotrope, ce qui implique
que le polynôme / e k[Xx, Xm] est irréductible. Le corps k(f) est appelé
le corps de zéros générique de la forme quadratique /. C'est aussi le corps des

fonctions de la quadrique (affine) correspondante.
Soit q une forme quadratique anisotrope et représentant 1 sur k.

Remarquons que l'on a les inclusions suivantes:

Gm (q) C Dm (q) C <C.Dm(q)>

Théorème 9. Supposons que la forme quadratique f représente 1.

Alors on a:

a) qk{f) est hyperbolique si et seulement si f e Gm(q);
b) q contient f si et seulement si f g Dm (q);
c) qk(f) est isotrope si et seulement si f g <Dm (q) >

a) est un cas particulier du corollaire du théorème 2 (voir aussi [4], 4.5.3),
b) est le «théorème de la sous-forme» de Pfister (cf. [4], th. 9.2.8), et c) est
un cas particulier du corollaire du théorème 1.

Voici une autre démonstration de c). On montre ici que si qk{f) est
isotrope, alors / g <Dm(q)>, l'autre implication étant facile. Ecrivons la
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forme quadratique / comme / - < 1 > © /'. Alors k(f) F(]/- f'(X')),
où X' (X2}...,Xm) et F k{X'). Supposons qkif) isotrope. Alors

par [4], 2.5.1, on a:

qF=-a<l,f'(X')> ®q' <a> ® q"

Donc a e D{qF) C Dm (q).
D'autre part, <1 ,f'{X')> représente / sur F(Xx) k{Xx, ...,Xm).

Done a<\if'(X')> représente af sur k(Xl9...,Xm). On en déduit

que af e Dm (q). Comme a e Dm (q), on a / e < Dm (q) >

7. Applications

Voici quelques applications du théorème 1 :

Sommes de carrés

Corollaire 1. Soit s un entier positif Si un polynôme f ek[Xl9

est une somme de 2S carrés dans k(Xu Xm), alors tout polynôme
irréductible et unitaire divisant f avec un exposant impair est une somme
de Is carrés dans k{Xx, Xm).

Soit q la forme quadratique somme de 25 carrés. Alors q est une forme
de Pfister, donc D(q) <D(q)> (cf. [4], chap. 2, §10 ou [3], chap. 10,

cor. 1.7). Le corollaire découle de l'implication a) => b) du théorème 1,

appliqué au produit des polynômes irréductibles divisant / avec un exposant
impair.

Le cas m 1 de ce corollaire est dû à Kaplansky (cf. [4], chap. 10,

cor. 2.10).

Principe de Hasse

Soit k un corps de nombres. On note v une place (finie ou infinie) de k,
et kv le complété de k en v. Soit q une forme quadratique anisotrope sur k.

Corollaire 2. Soit f e k[X], Alors

fe <D(qkuiX))> pour toute place u de k & fe <D(qk(X))>

Il est clair que f e <D(qk(x))> ^ f e <D(qkv(X))> pour toute

place v de k.
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Montrons la réciproque. Par le théorème de Hasse-Minkowski (voir

par exemple [4], chap. 6, §6, cor. 6.6a)), si a e k est tel que a e D(qku)

pour toute place u de k, alors a e D(q). Donc, par la partie a) => b) du

théorème 1, on peut supposer que / est irréductible et unitaire.

Supposons que f e <D(qkv{X))> pour toute place u de k. Alors

la partie b) => c) du théorème 1 implique que qku(f) est isotrope pour
toute place u de k. Par le théorème de Hasse-Minkowski (cf. [4], chap. 6, §6,

th. 6.5), on en déduit que qk(f) est isotrope. Donc, par la partie c) => b)
du théorème 1, / 6 D(qk{X)).

Une variante du nombre de Pythagore

Pour tout corps F et pour tout entier 1, on note DF(n) C F*//7*2
l'ensemble des sommes de n carrés d'éléments de F, et <DF(n)> le sous-

groupe deP/P2 engendré par DF(n).
Lorsque F k{Xx, ...,Xm), on note Dm (n) DF{n).
Rappelons que le niveau d'un corps F, noté s (F), est par définition le plus

petit entier tel que -le DF(s). Si - 1 n'est pas une somme de carrés
dans F, alors on pose s(F) oo, et l'on dit que F est formellement réel.

Corollaire 3. Supposons que k soit formellement réel. Soit

f e k[X{, Xm] un polynôme irréductible et unitaire. Alors

fe <Dm(n)>e>s(k(f)) < n

Soit q la forme quadratique somme de n carrés. Comme k est formellement
réel, q est anisotrope. Il est clair que

s(k(f)) < n & qkU) isotrope

Par le corollaire du théorème 1, on a

qk(f) isotrope « / e <Dm(n)>
Ceci démontre le corollaire.
Soit Df{oo)U,7= DP(n). Le nombre de Pythagore de F est le

plus petit entier n tel que DF(n)DF(co). S'il n'existe aucun entier avec
cette propriété, alors on pose p(F) oo.

Notation. On note p'(F) le plus petit entier n tel que <DF(n)>
Df(co). S'il n'existe aucun entier avec cette propriété, alors on pose

p'(F) 00.
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Corollaire 4. Supposons que k soit formellement réel, et que
1. Alorsp'(k(Xx ...,Xm))sup{s(*(/)) + 1, / e A: [AT,

unitaire et irréductible, avec s(k(f)) < 00}

Démonstration. Posons

p'=p'(k(Xl9...9Xm))9
p" sup {s (k(f)) + 1, f e k[Xi, ...,Xm] unitaire et irréductible,

avec s(k(f)) < 00}

Soit / g k[Xi, Xm\ irréductible et unitaire. Si fe<Dm(n)>,
alors par le corollaire 3 on a s(k(f)) < n. Donc p"^p'.
Réciproquement, si s(k(f)) < n alors par le corollaire 3 f e <Dm(n)> pour
tout polynôme irréductible et unitaire de k[X1, ...,Xm}. Pour montrer que

p'^p", il reste donc à démontrer que p'(k)^p". Soit d e k* une
somme de carrés, d $ k*2. Posons f(X) X2 + d e k[X]. Alors / est

un polynôme unitaire et irréductible. On a k(f) k(\/ - d). Supposons

que s(k(f)) n. Alors il existe ai9 an, bx, bn e k tels

que - 1 (ai + b^y^d)2 + + (an + bn]/^d)2. Alors - 1 a\ +
+ a2n - d(b\ + + b2n). Donc d(b2 + + b2)2 (a\ + + a\ + 1)
• (b\ + + b2n). Ceci entraîne que de <Dk(n + 1) >

En utilisant des résultats de Colliot-Thélène et Jannsen [1], on obtient

Corollaire 5. Soient k un corps de nombres réel, X, Y et Z des

variables. Alors

a) p'(k(X)) 2,3 ou 5;

b) p'{k(X, Y)) 2,3 ou 5;

c) p'(k{X, y, Z)) 2, 3, 5 ou 9.

En effet, par [1], th. 4.1, (b) et (c), on voit que s(k(f)) 1, 2, 4 ou 00

si / est un polynôme irréductible et unitaire de k[X] ou k[X, Y] et

s(k(f)) 1,2, 4, 8 ou 00 si / est un polynôme irréductible et unitaire de

k[X, E, Z]. Par le corollaire précédent, ceci démontre l'affirmation.
Le corollaire ci-dessus et les résultats et conjectures de [1] suggèrent la

conjecture suivante:

Conjecture. Soit k un corps de nombres réel, et soient X1} Xm
des variables, m ^ 4. Alors p'{k{X{,..., Xm)) est de la forme

p'(k(Xl,...,Xm)) 2'+ 1

où r e {0, m}.
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Finalement, remarquons que le cas des corps de nombres totalement

imaginaires est beaucoup plus simple :

Proposition. Soit k un corps de nombres totalement imaginaire.

Alors

p'(Jc(Xl,...,Xm)) 2,3 ou 5,

quel que soit m ^ 1.

En effet, si k est totalement imaginaire, alors s(k) 1, 2 ou 4 (voir par

exemple [4], chap. XI). Comme tout élément d'un corps de caractéristique

différente de 2 peut s'écrire comme différence de deux carrés, on a

p(k(Xu ...,Xm)) < 5, quel que soit m. Le lemme suivant montre que

si p(k(Xl9 ...,!«)) 4, alors p'{k(Xi, ATm))< 3, Ceci démontre la

proposition.

Lemme. Soit F un corps de caractéristique différente de 2. Alors

Df(4) C Df(3). Df(3) C <Df(3)>
Soit H (-1, -1) l'algèbre de quaternions de Hamilton sur F. Soit FF

le sous-groupe additif des quaternions purs de H. Notons TV la norme réduite.

Alors N(H) Df(4), N(FF) DF{3). Pour démontrer le lemme, il suffit
donc de vérifier que pour tout a e H, il existe b e Hr tel que ab e FF.
Mais cette condition consiste en une équation linéaire en trois variables,
laquelle a toujours une solution.
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