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Mass Distribution Principle. Let y be a mass distribution on A C R".
If there exist constants ¢ >0 and & >0 such that, for all dyadic cubes
Q CR" with |Q] <38,

(10) - w@ < |0,
then
(11) o < dmg(A4) .

Proof. Let {Q;}, be a covering of A with dyadic cubes of diameter
not exceeding &. Then

(12) 0<u(A)<u(UQ,-)<Zu(Qi)<C'ZlQiI“
i=1 1 1

and hence the discontinuity in the M *(A)-graph from + o to 0 occurs at a

value not less than a. Thus

5. THE MAIN RESULT

The notation used in the following theorem and in its proof can be
found in Section 0.

THEOREM. Let

(14) f(x)= ) 2-rdist(2?’x,Z), xe[0,1].

p=0
Then for every Borel subset B of graph(f) with m(Proj(B)) > 0,
(15) dimyz(B) = 2.

Proof. Assume that B is a Borel set as above. From graph(f) C R?
there follows

(16) dimgz(B) < 2.
It will suffice to prove that
(17) o < dimy(B)

for an arbitrary positive o < 2. Distribute the unit mass as in Lemma 1.
Let Q be a dyadic cube with side length less than ;. Then the side length
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of Q is 2-" for some positive integer » and there is a positive integer p
such that

(18) 272l L2 n g 272

Let D, be the smallest vertical band which inscribes Q, and so it has band
width 2-”. From the second inequality in (18) we conclude that D, is
contained in a band from generation p. In the discussion and in the estimations
which follow, just those bands which are of generations p,p + 1 and p + 2
play a role. We let D and D; denote an arbitrary band from generation
p + 1 and its left half, respectively. On D; we study f(x) as a sum of
two terms,

p+1 o

(19) f(x) =) 2-kdist(2?*x,2Z) + ), 2-*dist(2?*x,Z) .
0 p+2

The first term is linear and the second periodic (one cycle on each subband
from generation p + 2). This implies that the distribution of mass via (5)
on each (p + 2)-subband (of D;) is the same but translated a fixed
distance dp in y-direction. Now let D’ be a (p+ 2)-subband of D;
and define

(20) Gp (»):=pn({(x;,x;) e D" and x, < y}) .

Then its derivative g(y) exists a.e. and
1) lgll=2-27"2.

If D’ and D" are neighbouring (p + 2)-generation subbands of D;,
then Gp~(y) is a translation of Gp-(y) by dp. Hence, we may use just
one function G and its translates. The fixed translation dp of mass in
y-direction from one band to the next may be estimated by the derivative of
the first sum of (19),

d p+1
dp=2-2""*x — ( Y 2-kdist(22*x, Z))
X \p=0
(2 > 22PFI(Q-(pr 2Pl pmpa2r 9y 0 -204 - (p+2)

The last inequality holds for p > 1, because the rapid decrease of the
successive terms in the parenthesis implies that its value is larger than half
the first term. (It is easy to check that this estimation also works for
(p +‘2)-generation bands in the right band half Dy of a (p + 1)-generation
band).
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Now consider the restrictions of f(x) to all (p+ 2)-generation bands
in D, and Dy, and use the translation properties for G and its derivative g.
Then by applying Lemma 2 with |lg||=2"%""" d> 2 -2Ptl=(p+2)
m(I) = 2" we obtain

2-n +2
(23) u(DLmQ)+u(DRmQ)<(1+int2 )~2“2" .

—2p+1-(p+2)

The number of bands from the (p + 1) generation contained in D, are
2-n/2-27*' and, since 27 < n by (18), we have, for a < 2,

—-n

2~n
. . —2p+2
n(Q) = u(BoN Q) < y—2p+1 ) (1 T 1nt2_2p+1_(p+2)) 2=

(24) <2 n.2—2p+1 +2—2n+p+2<(2—n)2.(1+2p+2)
<@ -M2(l+4n) <2 Mo =0
if 1 +4n 22—,

The Mass Distribution Principle now gives (17) and the proof is complete.

Remark. The nowhere-differentiability of the constructed function f is
omitted in the statement of the Theorem. However this property can
be established by minor changes to the proof in [RHA] or the proof of
Theorem 2-9 in [D-W]. The continuity of f(x) follows from uniform
convergence of the series (4).
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