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106 P. WINGREN

Proof. 1t suffices to assume that I = [0, m(I)]. The general case will then

follow by a change of variables. If we use the notation M = int mff) we get
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3. HAUSDORFF MEASURE, NET MEASURE
AND HAUSDORFF DIMENSION

This section presents standard results and definitions; see for example
[FALI1].

The a-dimensional Hausdorff measure of a subset A of R” is defined by
(8) H*(A4) = lim inf ) |U;|®

§—0 {U;} i=1

where {U;} 7 is a covering of A with | U;| < 8, i = 1,2, ..., and the infimum
is taken over all such coverings. The unique number o, such that o < ag
implies H*(A) = + o and 0, < a implies H%(A) = 0 is by definition the
Hausdorff dimension of A.

The net measure M®(A) of A is defined similarly except that the
coverings {U;} consist of closed dyadic cubes. It follows that there exists a
constant ¢; > 0 such that

® ciMe(A) S H*(A) S M*(A4) .

Since M*(A) and H*(A) must therefore yield identical dimensions
for A it will suffice to work with dyadic cubes.
4. MASS DISTRIBUTION AND HAUSDORFF DIMENSION

The following well known (see e.g. [FAL2, p. 232]) mass distribution
principle will be used in Section 5.
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