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CONCERNING A REAL-VALUED CONTINUOUS FUNCTION
ON THE INTERVAL WITH GRAPH OF HAUSDORFF DIMENSION 2

by Peter WINGREN

ABSTRACT. A real-valued continuous nowhere-differentiable function
on [0, 1] is constructed. Its graph F is proved to have the following property.
If B is a Borel subset of F and if the projection of B on [0, 1] has positive
Lebesgue measure, then the Hausdorff dimension of B is two.

0. INTRODUCTION

In 1903 Takagi [TAK, p. 176] gave an extremely simple construction of
a nowhere differentiable real-valued continuous function on [0, 1]. Takagi’s
construction 1is

(1) T(x) = i 2-,dist(2%x, Z)

p=0

where each term is a scaled version of the sawtooth function
) dist(x,Z): = inf{|x - y|: y e Z}.

Later, in 1930, van der Waerden [WAE] gave a similar example, which
de Rham [RHA], in 1957, improved to an example identical with Takagi’s.

It follows from a proof of Mauldin and Williams [M-W, pp. 795-797] that
the graph of the Takagi function has a o-finite linear Hausdorff measure
and hence is of Hausdorff dimension 1.

In 1937 Besicovitch and Ursell [B-U, p. 29] constructed for an arbi-
trary a, 1 < o < 2, a real-valued nowhere-differentiable function in C[O0, 1]
with graph of Hausdorff dimension a. They too used the sawtooth function
dist(x, Z) as a building block in their construction.

In this paper we construct a real valued continuous function f(x), x € [0, 1],

whose graph has an optimal property with respect to Hausdorff dimension
and measure.
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We prove that for an arbitrary o, 1 < a < 2, f(x) has the property

Z(a): Every Borel subset B C graph(f), with projection on the x-axis
of positive Lebesgue measure m (Proj(B)) > 0, has infinite a-dimensional
Hausdorff measure

3) H*(B) = + o .
It is easy to see that
Za)Va<2e &

where

Z : Bvery Borel set B C graph(f) with m (Proj(B)) > 0 has Hausdorff
dimension equal to two.

Rather than establish a general theorem valid for a class of functions we
shall construct a single function with the desired property. The rationale
is to provide a simple construction accompanied by a short, clear and
instructive proof.

Our function is

[e<)

4) f(x) =) 2-,dist(22’x,Z) .
p=0

Even though Z7 is established for only a single function f, the proof
contains general methods extracted as Lemma 1 and Lemma 2. It appears
that Lemma 1 is well known in more general cases than ours; compare
[P-U, p. 159, the beginning of the proof of their Lemma 1]. However the
proof is included here for completeness and because in the present case it is
particularly simple.

The author is grateful to Professor V.P. Havin [HAV] for suggesting the
investigation of fractal graphs with respect to Z(a), a = 1.

PROBLEM. We believe that the following problem is unsolved.

Part 1: Construct a real valued function in CJ[0, 1] with graph of
Hausdorff dimension 1 and with property Z(a) for a = 1.

Part 2: Determine the optimal smoothness in terms of the second
difference of such a function.

Notation. The diameter of U is denoted by |U| and the L!-norm
of ge L'(R) by ||g||. If f is a real valued function in CJ0, 1], we write
F(x) for (x, f(x)). The notation H¢(F) stands for a-dimensional Hausdorff
measure of a set F C R? and M®(F) is the a-dimensional net measure of F
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constructed by closed dyadic cubes. The graph of a real valued function
feCJ[0, 1] is denoted by graph (f). By a dyadic cube we mean a cube which
is the Cartesian product of dyadic intervals. If Q is an arbitrary dyadic closed
cube, then the band of type {(x,»):(x,z) € Q for some z € R} is called a
dyadic band. In our construction the dyadic bands of width 227 play a
special role. They are called bands of generation p,p = 0,1, 2, ... .

Acknowledgement. We would like to thank the referee for helpful

suggestions.

1. A LEMMA ABOUT MASS DISTRIBUTION

By a mass distribution on a subset A of R2 we mean a measure p on A
such that 0 < p(4) < .

LEMMA 1. Let f be a real valued measurable function defined
on [0,1]. Then there is a mass distribution w on F:= graph(f)
such that

1) for any two subintervals I and I’ of [0,1], with m) =m("),

L X R) =u(d’ X R)
and

2) if for two Borel sets B, and B, in [0,1] X R there exists (X0,¥0) € R2
such that

BiNnF+ (x0,¥0) =ByNnF

then
H(B1) = u(By) .
Proof. Let B be an arbitrary Borel set in R2. Define
) L(B) =m(f~1(B) .

Then it is obvious that p is a mass distribution on graph(f) and 1) and 2)
follow from the translation invariance of the Lebesgue measure.

2. A LEMMA ABOUT MASS DISTRIBUTION
AND SUCCESSIVE TRANSLATIONS

LEMMA 2. Let g(y) >0 and g(y) e L! (R). If I isa finite interval
and d is a positive real number then

(6) Y g -ndydy< 1+ in "L el
n=—o d
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