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Le paramétrage de Hopf permet d’identifier GA a (A X A — A) X R,
Soit alors m la mesure sur GA définie par:

m=u X dt.

C’est une mesure de Radon. I'-invariante et ®,-invariante. La mesure m,
restriction de m au compact &, (considéré comme un domaine fondamental
de " dans GA), est finie et ®r-invariante. On a:

2.10.2. THEOREME. ®; est ergodigue sur (%, m).

La preuve de ce théoréme est mot pour mot la preuve classique de
Hopf [Ho]. Le point essentiel est que p s’écrive comme un produit de deux
mesures sur A.

Clairement, ’ergodicité de ®; sur (&, m) est équivalente a celle de T’
sur (AX A—A,u). Puisque p et v, X v, sont absolument continues,
Iergodicité de T sur (A X A — A, p) entraine ’ergodicité de T sur (A, v,).
D’ou,

2.10.3. COROLLAIRE. L’actionde T estergodique sur (A X A — A, p)
et sur (A, vy).

Notons respectivement 4 et 4,,, ’entropie topologique de ®; et I’entropie
mesurable de (®7,m). Elles se calculent comme dans le cas convexe
cocompact (voir [Su2], p. 275-276, [K]). On obtient:

2.10.4. THEOREME. h = h, =1. Ainsi m maximise [’entropie
mesurable.

2.11. PREUVE DU THEOREME 2.0.1.

Nous renvoyons a lintroduction pour les notations. Nous montrons
d’abord deux lemmes:

Soient x, X, des origines respectivement de X; et X,. Notons d, et d,
les métriques d,, et dy, sur Ay et A,.

2.11.1. LEMME. Supposons que [l’application Q: Ay, dy) (A, dy)
soit conforme. Alors, son facteur conforme ® est continu sur A,

2.11.2. Preuve de 2.11.1. Puisque Q est conforme, les ensembles
limites A; et A, ont méme dimension de Hausdorff 1. De plus, en notant v,
et v, les T-mesures de Hausdorff de (A;, d,) et (Ay,d,), on a:

(1) Q*v, = @Tvy.
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Soit p; et p, les mesures sur A; X Ay — A et A, X A, — A, définies
par la relation 2.10.1. D’aprés 1’égalité (1), la mesure:

(Q X Q)*u,

est absolument continue par rapport a p;. De plus, p, est I'-invariante
et Q est I'-équivariant, donc (Q x Q)*pu, est I'-invariante. Alors, puisque
I’action de T est ergodique sur (A; X A; — A, ;) (corollaire 2.10.3), les
mesures (2 X Q)*u, et u; sont égales a une constante prés. Donc, a une
constante pres leurs densités par rapport a v; X v; sont presque siirement
égales. D’ou v; X v;-presque sirement:

0 ()™ (&) Cste

[di(8,EN]%  [da(Q(E), QEN]>’

soit encore

[d>(Q(8), Q(EN)]? = (Cste) " (§) @ (§") [di(E, E1)]* .

L’application Q:(A;,d;) = (A,,d,) étant continue, o P’est également.
Notons qu’en faisant tendre &’ vers £, on trouve Cste = 1. [

Soit maintenant s; ’involution de GA; définie par:

si(y) =v" avec vy'(t) =v(-1).

Par passage au quotient on obtient une involution de %; que ’on notera
encore s;.

2.11.3. LEMME. Supposons que [’homéomorphisme G: %~ &,
conjugue les flots géodésiques. Quitte a remplacer G par G = ®r 0 G
pour un certain réel T,, on peut supposer:

GOS1=S20G.

2.11.4. Preuve de 2.11.3. Soit T la fonction sur %, dans R, définie
de la maniére suivante: Etant donné vy € %;, T(y) est Punique réel vérifiant:

(1) D7y (G @ Sl(Y)) =50 (I)T(Y)(G(Y)) .

La fonction 7 est continue et invariante par le flot de %,. Aussi elle est
constante (par D’ergodicité du flot sur (&, m,;); (théoréme 2.10.2)).
Notons T, la valeur constante de T, et G' I’application ® 1, © G. D’apres (1),
on a:

G,OSI=.5'20G,. D
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2.11.5. Preuve de 2.0.1. Montrons (i) = (ii).

Soit g e T. Notons respectivement | g’ |, et | g’ |,, le facteur conforme
de g sur (A;,d,;) et (A,, d,). En écrivant:

Qog=go0Q.
et en calculant le facteur conforme des deux membres, on obtient:

(1) (wog)lg 20 Qo .

Construisons maintenant notre conjugaison: Paramétrons GA; et GA,
comme au paragraphe 2.9, en choisissant pour origines les points x; et x,.
Définissons une application G de GA; dans GA,, par:

G(E_,E,,1) = (Q(E),Q(E.), t — logw(E,)) .

D’aprés le lemme 2.11.1, o est continue, donc G est un homéomorphisme.
D’aprés la relation 2.9.2, il conjugue les flots de GA;, et GA,. De plus,
quel que soit g € I', il vérifie:

1=(|g’

(2) Gog=goG.
En effet, d’apres 2.9.4 on a:
Gog)(E_,E,,0)
=(Qog(§.),Q0g(&,),t— B, (x1,8 %) —logw © g(&.))
et
(g0 G (E-,E.,0)
= (80 Q(E-), g0 Q(E4), t —logw(E,) — Bae,) (X2, 87 'x2)) .
Or d’aprés le corollaire 2.6.3,

B£+(X1sg_lxl) = 10g|g'(§+) |1

et

2 © Q(Ew)) .

Ainsi I’égalité (2) provient de (1) et de la I'-équivariance de Q. Grace
a (2), on obtient une conjugaison des flots de €, et %,. Par construction,
elle induit ’application F entre &, et &, .

Bo (X2, 87 1x,) = log(| g’

Montrons (ii) = (i).
Soit G: &, = %, une conjugaison des flots, qui induit ’application F
entre 7, et #,. D’aprés le lemme 2.11.3, on peut supposer:
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(3) Gos =5,00G.

Relevons la conjugaison G & GA,; et GA, de la maniére suivante: Soit 7;
la projection de GA; sur %;. Pour y:R — X, appartenant a GA,, soit
v :R— X,, un élément de GA, vérifiant:

Y'(—®) = Q(y(—®)), v'(+x)=Q(y(+ x))

et

ma(y') = G(mi (7)) -

Notons que vy’ existe puisque G induit F entre #; et #,. De plus, si w;(Y)
n’appartient & aucune orbite périodique de &;, vy’ est unique. On obtient
ainsi une application

G: GA| — GA,
Yy
définie sauf sur les relevés des orbites périodiques, qui conjugue les flots,
vérifie:
GOomy=m,0 G.
ainsi que, d’apres ( 3):
4) , GOSI:SZOG.

Paramétrons GA,; et GA, comme au paragraphe 2.9, en choisissant les
points x; et x, comme origines. Puisque G est une conjugaison continue entre
les compacts &, et %,, elle est uniformément continue. Aussi elle envoie
sous-ensembles fortement stables sur sous-ensembles fortement stables.
D’aprés sa définition et la proposition 2.8.6, G a la méme propriété. Aussi,
d’aprés 2.9.3, G s’écrit en coordonnées: ‘ |

GE_, &, 1) = (QE), QL) t—logn(E,)),

pour une certaine fonction ® de A; dans ]0, + o[. Notons que ceci permet
de définir G sur GA, tout entier.

Comparons maintenant les métriques d; = d,, et d, = d,, sur A; et A;:
Soit € et £’ deux points distincts de A;, et p appartenant a (£¢”"). Soit vy
I’élément de GA,, vérifiant:

Y(—®) =&, y(+o)=8& e y@O0)=p.
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Les points G(y)(0) et f?(sl(y)) (0) appartiennent a la géodésique
(Q(E)Q(E")) de X,. D’apres (4) ils sont égaux. Notons-les g. En coor-
données on a:

Y= (‘tw &I’Bi'(xl ’p))

et
si(y) = (&', &, B:(x1,p)) -
D’ou:
G(v) = (Q(8), Q(E"), Ber(x1,p) — log (&)
et
G(s1(7)) = (Q(&"), (&), Br(x1,p) — log® (&)
donc

5)  Boey(x2,@) = Bae(x2, G(¥)(0)) = Be:(x1,p) — logw (&)
et
6)  Bow (X2, ) = Bag (x2, G(s1(1))(0)) = Be(x1,p) — logo(§) .
Ainsi (5) et (6) donnent:

[dx(Q(8), QEN]? = 0(E)o(E") [di (&, §)]> .

Puisque l’application Q de (A;,d;) sur (A,,d,) est continue, ® I’est
également. Alors, en faisant tendre &’ vers &, Q est conforme de facteur
conforme . [
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