Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 41 (1995)

Heft: 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: STRUCTURE CONFORME AU BORD ET FLOT GÉODÉSIQUE D'UN

CAT(-1)-ESPACE

Autor: Bourdon, Marc

Kapitel: 2.11. Preuve du théorème 2.0.1.

DOI: https://doi.org/10.5169/seals-61817

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 09.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Le paramétrage de Hopf permet d'identifier $G\Lambda$ à $(\Lambda \times \Lambda - \Delta) \times \mathbf{R}$. Soit alors \tilde{m} la mesure sur $G\Lambda$ définie par:

$$\tilde{m} = \mu \times dt$$
.

C'est une mesure de Radon. Γ -invariante et Φ_T -invariante. La mesure m, restriction de \tilde{m} au compact \mathcal{E} , (considéré comme un domaine fondamental de Γ dans $G\Lambda$), est finie et Φ_T -invariante. On a:

2.10.2. Théorème. Φ_T est ergodique sur (\mathscr{C}, m) .

La preuve de ce théorème est mot pour mot la preuve classique de Hopf [Ho]. Le point essentiel est que μ s'écrive comme un produit de deux mesures sur Λ .

Clairement, l'ergodicité de Φ_T sur (\mathscr{E}, m) est équivalente à celle de Γ sur $(\Lambda \times \Lambda - \Delta, \mu)$. Puisque μ et $\nu_x \times \nu_x$ sont absolument continues, l'ergodicité de Γ sur $(\Lambda \times \Lambda - \Delta, \mu)$ entraîne l'ergodicité de Γ sur (Λ, ν_x) . D'où,

2.10.3. COROLLAIRE. L'action de Γ est ergodique sur $(\Lambda \times \Lambda - \Delta, \mu)$ et sur (Λ, ν_x) .

Notons respectivement h et h_m , l'entropie topologique de Φ_T et l'entropie mesurable de (Φ_T, m) . Elles se calculent comme dans le cas convexe cocompact (voir [Su2], p. 275-276, [K]). On obtient:

- 2.10.4. THÉORÈME. $h = h_m = \tau$. Ainsi m maximise l'entropie mesurable.
- 2.11. Preuve du théorème 2.0.1.

Nous renvoyons à l'introduction pour les notations. Nous montrons d'abord deux lemmes:

Soient x_1, x_2 des origines respectivement de X_1 et X_2 . Notons d_1 et d_2 les métriques d_{x_1} et d_{x_2} sur Λ_1 et Λ_2 .

- 2.11.1. LEMME. Supposons que l'application $\Omega: (\Lambda_1, d_1) \to (\Lambda_2, d_2)$ soit conforme. Alors, son facteur conforme ω est continu sur Λ_1 .
- 2.11.2. Preuve de 2.11.1. Puisque Ω est conforme, les ensembles limites Λ_1 et Λ_2 ont même dimension de Hausdorff τ . De plus, en notant ν_1 et ν_2 les τ -mesures de Hausdorff de (Λ_1, d_1) et (Λ_2, d_2) , on a:

$$\Omega^* \mathbf{v}_2 = \mathbf{\omega}^{\tau} \mathbf{v}_1.$$

Soit μ_1 et μ_2 les mesures sur $\Lambda_1 \times \Lambda_1 - \Delta$ et $\Lambda_2 \times \Lambda_2 - \Delta$, définies par la relation 2.10.1. D'après l'égalité (1), la mesure:

$$(\Omega \times \Omega)^* \mu_2$$

est absolument continue par rapport à μ_1 . De plus, μ_2 est Γ -invariante et Ω est Γ -équivariant, donc $(\Omega \times \Omega)^*\mu_2$ est Γ -invariante. Alors, puisque l'action de Γ est ergodique sur $(\Lambda_1 \times \Lambda_1 - \Delta, \mu_1)$ (corollaire 2.10.3), les mesures $(\Omega \times \Omega)^*\mu_2$ et μ_1 sont égales à une constante près. Donc, à une constante près leurs densités par rapport à $\nu_1 \times \nu_1$ sont presque sûrement égales. D'où $\nu_1 \times \nu_1$ -presque sûrement:

$$\frac{\omega^{\tau}(\xi)\omega^{\tau}(\xi')}{[d_1(\xi,\xi')]^{2\tau}} = \frac{\text{Cste}}{[d_2(\Omega(\xi),\Omega(\xi'))]^{2\tau}},$$

soit encore

$$[d_2(\Omega(\xi), \Omega(\xi'))]^2 = (\operatorname{Cste})^{1/\tau} \omega(\xi) \omega(\xi') [d_1(\xi, \xi')]^2.$$

L'application $\Omega: (\Lambda_1, d_1) \to (\Lambda_2, d_2)$ étant continue, ω l'est également. Notons qu'en faisant tendre ξ' vers ξ , on trouve Cste = 1.

Soit maintenant s_i l'involution de $G\Lambda_i$ définie par:

$$s_i(\gamma) = \gamma'$$
 avec $\gamma'(t) = \gamma(-t)$.

Par passage au quotient on obtient une involution de \mathcal{E}_i que l'on notera encore s_i .

2.11.3. Lemme. Supposons que l'homéomorphisme $G: \mathscr{C}_1 \to \mathscr{C}_2$ conjugue les flots géodésiques. Quitte à remplacer G par $G' = \Phi_{T_0} \circ G$ pour un certain réel T_0 , on peut supposer:

$$G \circ s_1 = s_2 \circ G$$
.

2.11.4. Preuve de 2.11.3. Soit T la fonction sur \mathcal{E}_1 dans \mathbf{R} , définie de la manière suivante: Etant donné $\gamma \in \mathcal{E}_1$, $T(\gamma)$ est l'unique réel vérifiant:

$$\Phi_{T(\gamma)}(G \circ s_1(\gamma)) = s_2 \circ \Phi_{T(\gamma)}(G(\gamma)).$$

La fonction T est continue et invariante par le flot de \mathscr{E}_1 . Aussi elle est constante (par l'ergodicité du flot sur (\mathscr{E}_1, m_1) ; (théorème 2.10.2)). Notons T_0 la valeur constante de T, et G' l'application $\Phi_{T_0} \circ G$. D'après (1), on a:

$$G' \circ s_1 = s_2 \circ G'$$
. \square

2.11.5. Preuve de 2.0.1. Montrons (i) \Rightarrow (ii).

Soit $g \in \Gamma$. Notons respectivement $|g'|_1$ et $|g'|_2$, le facteur conforme de g sur (Λ_1, d_1) et (Λ_2, d_2) . En écrivant:

$$\Omega \circ g = g \circ \Omega .$$

et en calculant le facteur conforme des deux membres, on obtient:

$$(0) \quad (\omega \circ g) |g'|_1 = (|g'|_2 \circ \Omega)\omega.$$

Construisons maintenant notre conjugaison: Paramétrons $G\Lambda_1$ et $G\Lambda_2$ comme au paragraphe 2.9, en choisissant pour origines les points x_1 et x_2 . Définissons une application \tilde{G} de $G\Lambda_1$ dans $G\Lambda_2$, par:

$$\widetilde{G}(\xi_-, \xi_+, t) = (\Omega(\xi_-), \Omega(\xi_+), t - \log \omega(\xi_+)).$$

D'après le lemme 2.11.1, ω est continue, donc \tilde{G} est un homéomorphisme. D'après la relation 2.9.2, il conjugue les flots de $G\Lambda_1$ et $G\Lambda_2$. De plus, quel que soit $g \in \Gamma$, il vérifie:

$$\tilde{G} \circ g = g \circ \tilde{G} .$$

En effet, d'après 2.9.4 on a:

$$(\tilde{G} \circ g) (\xi_{-}, \xi_{+}, t)$$

$$= (\Omega \circ g(\xi_{-}), \Omega \circ g(\xi_{+}), t - B_{\xi_{+}}(x_{1}, g^{-1}x_{1}) - \log \omega \circ g(\xi_{+}))$$

et

$$(g \circ \tilde{G})(\xi_{-}, \xi_{+}, t)$$

$$= (g \circ \Omega(\xi_{-}), g \circ \Omega(\xi_{+}), t - \log \omega(\xi_{+}) - B_{\Omega(\xi_{+})}(x_{2}, g^{-1}x_{2})).$$

Or d'après le corollaire 2.6.3,

$$B_{\xi_{+}}(x_{1}, g^{-1}x_{1}) = \log |g'(\xi_{+})|_{1}$$

et

$$B_{\Omega(\xi_+)}(x_2, g^{-1}x_2) = \log(|g'|_2 \circ \Omega(\xi_+)).$$

Ainsi l'égalité (2) provient de (1) et de la Γ -équivariance de Ω . Grâce à (2), on obtient une conjugaison des flots de \mathscr{E}_1 et \mathscr{E}_2 . Par construction, elle induit l'application F entre \mathscr{O}_1 et \mathscr{O}_2 .

Montrons (ii) \Rightarrow (i).

Soit $G: \mathscr{C}_1 \to \mathscr{C}_2$ une conjugaison des flots, qui induit l'application F entre \mathscr{O}_1 et \mathscr{O}_2 . D'après le lemme 2.11.3, on peut supposer:

$$G \circ s_1 = s_2 \circ G .$$

Relevons la conjugaison G à $G\Lambda_1$ et $G\Lambda_2$ de la manière suivante: Soit π_i la projection de $G\Lambda_i$ sur \mathscr{E}_i . Pour $\gamma: \mathbf{R} \to X_1$ appartenant à $G\Lambda_1$, soit $\gamma': \mathbf{R} \to X_2$, un élément de $G\Lambda_2$ vérifiant:

$$\gamma'(-\infty) = \Omega(\gamma(-\infty)), \quad \gamma'(+\infty) = \Omega(\gamma(+\infty))$$

et

$$\pi_2(\gamma') = G(\pi_1(\gamma)).$$

Notons que γ' existe puisque G induit F entre \mathcal{O}_1 et \mathcal{O}_2 . De plus, si $\pi_1(\gamma)$ n'appartient à aucune orbite périodique de \mathcal{E}_1 , γ' est unique. On obtient ainsi une application

$$\tilde{G}: G\Lambda_1 \to G\Lambda_2$$
 $\gamma \mapsto \gamma'$

définie sauf sur les relevés des orbites périodiques, qui conjugue les flots, vérifie:

$$G \circ \pi_1 = \pi_2 \circ \tilde{G}$$
.

ainsi que, d'après (3):

$$\tilde{G} \circ s_1 = s_2 \circ \tilde{G} .$$

Paramétrons $G\Lambda_1$ et $G\Lambda_2$ comme au paragraphe 2.9, en choisissant les points x_1 et x_2 comme origines. Puisque G est une conjugaison continue entre les compacts \mathscr{C}_1 et \mathscr{C}_2 , elle est uniformément continue. Aussi elle envoie sous-ensembles fortement stables sur sous-ensembles fortement stables. D'après sa définition et la proposition 2.8.6, \tilde{G} a la même propriété. Aussi, d'après 2.9.3, \tilde{G} s'écrit en coordonnées:

$$\widetilde{G}(\xi_{-},\xi_{+},t)=\left(\Omega(\xi_{-}),\Omega(\xi_{+}),t-\log\omega(\xi_{+})\right),\,$$

pour une certaine fonction ω de Λ_1 dans $]0, +\infty[$. Notons que ceci permet de définir \tilde{G} sur $G\Lambda_1$ tout entier.

Comparons maintenant les métriques $d_1 = d_{x_1}$ et $d_2 = d_{x_2}$ sur Λ_1 et Λ_2 : Soit ξ et ξ' deux points distincts de Λ_1 , et p appartenant à $(\xi \xi')$. Soit γ l'élément de $G\Lambda_1$, vérifiant:

$$\gamma(-\infty) = \xi, \ \gamma(+\infty) = \xi' \quad \text{et} \quad \gamma(0) = p.$$

Les points $\tilde{G}(\gamma)(0)$ et $\tilde{G}(s_1(\gamma))(0)$ appartiennent à la géodésique $(\Omega(\xi)\Omega(\xi'))$ de X_2 . D'après (4) ils sont égaux. Notons-les q. En coordonnées on a:

$$\gamma = (\xi, \xi', B_{\xi'}(x_1, p))$$

et

$$s_1(\gamma) = (\xi', \xi, B_{\xi}(x_1, p)).$$

D'où:

$$\tilde{G}(\gamma) = (\Omega(\xi), \Omega(\xi'), B_{\xi'}(x_1, p) - \log \omega(\xi'))$$

et

$$\tilde{G}(s_1(\gamma)) = (\Omega(\xi'), \Omega(\xi), B_{\xi}(x_1, p) - \log \omega(\xi))$$

donc

(5)
$$B_{\Omega(\xi')}(x_2, q) = B_{\Omega(\xi')}(x_2, \tilde{G}(\gamma)(0)) = B_{\xi'}(x_1, p) - \log \omega(\xi')$$

et

(6)
$$B_{\Omega(\xi)}(x_2,q) = B_{\Omega(\xi)}(x_2,\tilde{G}(s_1(\gamma))(0)) = B_{\xi}(x_1,p) - \log \omega(\xi)$$
.

Ainsi (5) et (6) donnent:

$$[d_2(\Omega(\xi), \Omega(\xi'))]^2 = \omega(\xi)\omega(\xi') [d_1(\xi, \xi')]^2.$$

Puisque l'application Ω de (Λ_1, d_1) sur (Λ_2, d_2) est continue, ω l'est également. Alors, en faisant tendre ξ' vers ξ , Ω est conforme de facteur conforme ω . \square

RÉFÉRENCES

[Be] Benakli, N. Polyèdres hyperboliques, passage du local au global. Thèse, Université de Paris-Sud, 1992.

[Bea] BEARDON, A.F. The geometry of discrete groups. G.T.M. 91, Springer, 1983.

[Ber] BERGER, M. Géométrie, Vol. 3. Cedric Nathan, 1978.

[C] COORNAERT, M. Mesures de Patterson-Sullivan sur le bord d'un espace hyperbolique au sens de M. Gromov. *Pacific J. of Math. 159* (1993), 241-270.

[C-D-P] — T. DELZANT et A. PAPADOPOULOS. Géométrie et théorie des groupes, les groupes hyperboliques de Gromov. Lecture Notes in Math. 1441. Springer, 1990.

[C-E-H-P-T] CANNON, J.W., D.B.A. EPSTEIN, D.F. HOLT, M.S. PATERSON et W.P. THURSTON. Word processing and group theory. Bartlett and Jones, Boston, 1992.