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Le paramétrage de Hopf permet d'identifier GA à (A x A - A) x R.

Soit alors m la mesure sur GA définie par:

m p x dt

C'est une mesure de Radon. T-invariante et Or-invariante. La mesure m,
restriction de m au compact S, (considéré comme un domaine fondamental
de T dans GA), est finie et invariante. On a:

2.10.2. Théorème O T est ergodique sur f, m

La preuve de ce théorème est mot pour mot la preuve classique de

Hopf [Ho]. Le point essentiel est que p s'écrive comme un produit de deux

mesures sur A.
Clairement, l'ergodicité de <&T sur {'S, m) est équivalente à celle de T

sur (A x A - A, p). Puisque p et v* x v* sont absolument continues,
l'ergodicité de T sur (A x A - A, p) entraîne l'ergodicité de T sur (A, v*).
D'où,

2.10.3. Corollaire. L'action de T est ergodique sur (A x A - A, p)
et sur (A, vx).

Notons respectivement h et hm, l'entropie topologique de Or et l'entropie
mesurable de (0T,m). Elles se calculent comme dans le cas convexe
cocompact (voir [Su2], p. 275-276, [K]). On obtient:

2.10.4. Théorème, h — hm t. Ainsi m maximise l'entropie
mesurable.

2.11. Preuve du théorème 2.0.1.

Nous renvoyons à l'introduction pour les notations. Nous montrons
d'abord deux lemmes:

Soient Xi,*2 des origines respectivement de Xl et X2. Notons dx et d2
les métriques dXl et dXl sur Ai et A2.

2.11.1. Lemme. Supposons que l'application Q : (Ax, dx) (A2, d2)
soit conforme. Alors3 son facteur conforme co est continu sur Ax.

2.11.2. Preuve de 2.11.1. Puisque Q est conforme, les ensembles
limites Aj et A2 ont même dimension de Hausdorff t. De plus, en notant Vi
et v2 les i-mesures de Hausdorff de (Ax, dx) et (A2, d2), on a:

0) Q*v2 coTVi.
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Soit [ii et jx2 les mesures sur Ai x Ai - À et A2 x A2 - A, définies

par la relation 2.10.1. D'après l'égalité (1), la mesure:

(Q x Q)*p2

est absolument continue par rapport à pi. De plus, \x2 est T-invariante
et Q est T-équivariant, donc (QxQ)*p2 est T-invariante. Alors, puisque
l'action de T est ergodique sur (Ai x A2 - A, pi) (corollaire 2.10.3), les

mesures (Q x Q)*p2 et pi sont égales à une constante près. Donc, à une
constante près leurs densités par rapport à Vi x Vj sont presque sûrement

égales. D'où Vi x Vi-presque sûrement:

cût(^)c0t(£,') Cste

[tfi(^')PT
~

[rf2(Q(É),Q(Ç'))]2T'
soit encore

[rf2(Q(^), Q(^))]2 (Cste)1/xœ(^œ(^) [d^, Ç')P •

L'application Q : (Ai, d\) (A2, d2) étant continue, co l'est également.
Notons qu'en faisant tendre vers £, on trouve Cste =1.

Soit maintenant st l'involution de GA/ définie par:

Si (y) y' avec y '{t) y( - t)

Par passage au quotient on obtient une involution de c&i que l'on notera

encore S/.

2.11.3. Lemme. Supposons que Vhoméomorphisme G: ^
conjugue les flots géodésiques. Quitte à remplacer G par G' <&Tq o G

pour un certain réel T0, on peut supposer:

G o s\ s2 o G

2.11.4. Preuve de 2.11.3. Soit T la fonction sur ^i dans R, définie
de la manière suivante: Etant donné y e 7(y) est l'unique réel vérifiant:

(1) ®t(j)(G ° Si (y)) s2 ° <ê>7-(Y)(G(y))

La fonction T est continue et invariante par le flot de ^i. Aussi elle est

constante (par l'ergodicité du flot sur {^\,m0; (théorème 2.10.2)).
Notons T0 la valeur constante de 7, et G' l'application Oro o G. D'après (1),

on a:

G' o s-i s2 o G'
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2.11.5. Preuve de 2.0.1. Montrons (i) => (ii).

Soit g e T. Notons respectivement |g'|i et |g'|2, le facteur conforme

de g sur (Ai, dx) et (A2, d2). En écrivant:

Q o g g o Q

et en calculant le facteur conforme des deux membres, on obtient:

(1) (œ 0 g) \gr]i (\g' |2 o Q)co

Construisons maintenant notre conjugaison: Paramétrons GAi et GA2
comme au paragraphe 2.9, en choisissant pour origines les points Xi et x2.
Définissons une application G de GAi dans GA2, par:

G(Ç_ Ç+ 0 (Û(^), Û« + t - log©(£ + »

D'après le lemme 2.11.1, co est continue, donc G est un homéomorphisme.
D'après la relation 2.9.2, il conjugue les flots de GAi et GA2. De plus,
quel que soit g e Y, il vérifie:

(2) G o g g o G

En effet, d'après 2.9.4 on a:

(GO£)(£_,Ç+,0
(G ° g(£_), ^ ° g(Ç + t~B%+(xl,g-lxl)-logco o g(Ç +

et

(go G)«_,ç+,/)
(go Q((.),jo Q(£+), t + - B

Or d'après le corollaire 2.6.3,

log |g'(Ç +

et

Bntt+)(x2,g-1x2)log(|g'|2 o Q(Ç +

Ainsi l'égalité (2) provient de (1) et de la T-équivariance de Q. Grâce
à (2), on obtient une conjugaison des flots de et Par construction,
elle induit l'application F entre et •

Montrons (ii) => (i).
Soit G:?,-»?2une conjugaison des flots, qui induit l'application F

entre et D'après le lemme 2.11.3, on peut supposer:
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(3) G o si s2 o G

Relevons la conjugaison G à GA{ et GA2 de la manière suivante: Soit
la projection de GAZ sur Pour yiR-^Ai appartenant à GAi, soit

y': R -> X2, un élément de GA2 vérifiant:

Y'(-oo) Q(y(-00», y'(+ 00 Q(y(+ 00»

et

7l2(Y') G(7ti(Y» •

Notons que y' existe puisque G induit F entre et 02. De plus, si tci (y)
n'appartient à aucune orbite périodique de ^i, y' est unique. On obtient
ainsi une application

G: GAi GA2

y^y'
définie sauf sur les relevés des orbites périodiques, qui conjugue les flots,
vérifie:

G o m n2 o G

ainsi que, d'après 3):

(4) G o si s2 o G

Paramétrons GA) et GA2 comme au paragraphe 2.9, en choisissant les

points Xi et x2 comme origines. Puisque G est une conjugaison continue entre
les compacts ^ et W2, elle est uniformément continue. Aussi elle envoie

sous-ensembles fortement stables sur sous-ensembles fortement stables.

D'après sa définition et la proposition 2.8.6, G a la même propriété. Aussi,

d'après 2.9.3, G s'écrit en coordonnées:

G(Ç_, Ç + 0 (Û(S-), Û(Ê+), t - logco(^+))

pour une certaine fonction co de Ai dans ]0, + oo[. Notons que ceci permet
de définir G sur GAX tout entier.

Comparons maintenant les métriques dx dX{ et d2 dXl sur Ai et A2:
Soit £, et deux points distincts de A1? et p appartenant à (£,£,')• Soit y
l'élément de GAi, vérifiant:

Y(-oo) Ç, y(+ 00) t,'etY(0
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Les points G(y)(0) et G(.st(y))(0) appartiennent à la géodésique

(Q(Ç)Q(Ç')) de X2.D'après(4) ils sont égaux. Notons-les En coor-

données on a:

y (Ç, ^',Bv(
et

s, (Y)

D'où:

G(y) (Q(0.ß( ^'),Bv(Xl,p)-logft)(4'))

et

G(si(y))(n(4'),Q(0,5ç(*i,p)-log(a(0)
donc

(5) Br!(V)(x2,q) Baa>)(x2,G(Y)(0)) - logco(Ç')

et

(6) Bai^(x2i q) Baß) (x2, G(si(y))(0)) -Bç(Xi ,p)-logcû(^)

Ainsi (5) et (6) donnent:

[^(Q(^),Q(^))]2 œ(^)co(^) [ddî,*,')]2

Puisque l'application Q de (Ahrfi) sur (A2,d2) est continue, co l'est

également. Alors, en faisant tendre If vers Q est conforme de facteur
conforme co.
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