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wss(y) = {n € GA|Nn(0) € Hy@),y(+ )N+ ) = y(+ o)}
wuu(y) = {n e GA|Nn(0) € Hy),y(- =), N(— ) = y(— )} .

Observons qu’ils sont canoniquement homéomorphes a A privé d’un point.
On définit les sous-ensembles fortement stables et instables de (%, ®r) par:

(2.8.5)

2.8.6. DEFINITION. Soit w la projection de GA sur &, alors:

wss(n(y)) = m(W*(y))
W (n(y)) = (W (y)) .
Le sous-ensemble faiblement stable (resp. instable) de GA en vy, est la

réunion des sous-ensembles fortement stables (resp. instables), le long de
I’orbite de y sous ® ;. En d’autres termes:

Ws(y) = U Ws(@r(y)) ={neGA|[n(+ ) =y(+x)}

TeR

wey) = U W (@r(y)) = {n e GA[n(= ) = y(- »)}.

TeR

De méme, sont définis les sous-ensembles faiblement stables et instables de Z.
D’apres la définition 2.8.6, ils sont correspondance avec ceux de GA, via la
projection de GA sur %.

2.9. LE PARAMETRAGE DE HOPF DE (%, ®1)

Choisissons une origine x dans X. Soit A la diagonale de A X A. On définit
une application de (A X A — A) X R dans GA, de la maniére suivante: a

w

£_

FIGURE 5
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I’élément (£_,&,,7) de (A X A — A) X R, associons I’unique élément vy
de GA vérifiant (voir figure 5):

(2.9.1) V(=) =&_,y(+®) =E&,,B (x,7(0) =1.

Le lecteur vérifiera aisément que [’application ainsi définie est un
homéomorphisme. Notons que dans ces coordonnées @ s’écrit:

(292) (DT(a—a‘t3+st):((ta—)a+>t+T)'

Notons également que les sous-ensembles fortement stables du flot ont pour
coordonnées (voir 2.8.5):

(293) {(é—)&+>t)> E.v— EA—{§+}}
Par ailleurs, en coordonnées 1’action de I' s’écrit:
(2.9.4) g(&_,8.,1) =(gt_,g8,,t— B¢, (x,g7'%).

Aussi, on obtient un homéomorphisme:
(2.9.5) AXA-ANxXR/.—> %

en définissant la relation d’équivalence suivante sur (A X A — A) X R:

(&—:g+:t)~(&’—>él+at’)

si et seulement si, il existe g e I tel que:

&,— :ga-—’a:— :g&+>t,:t_Bé+(X9g_1x) .

2.10. MESURE D’ENTROPIE MAXIMALE

On rappelle ici une construction de la mesure d’entropie maximale du flot
géodésique, due a D. Sullivan ([Su], [Su2]), dans le cas des groupes convexes
cocompacts d’isométries de Hy, puis généralisée par V. Kaimanovich [K].

Soit x un élément de X, et soit respectivement T et v, la dimension et
la mesure de Hausdorff de (A, d,) (voir 2.7). La mesure:

Ve XV
[d.(&, &%

est une mesure de Radon sur A X A — A. Elle est indépendante de x et
I'-invariante. En effet {v,,v € X} est une mesure t-conforme (voir 2.7.4),
de plus d’aprés 2.4.2 et 2.7.1:

dy(§,8') = dx(§,8") [p(x, 2, &) p(x,», )] .

(2.10.1) n
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