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2.7.5. THEOREME.

a) La dimension T est égale au taux de croissance de T dans X.
C’est-a-dire:

— 1
1= lim —log#{gel||x—gx|x<n}.
n—+o N
b) La v,-mesure d’une boule de (A, d,), est proportionnelle a son rayon
d la puissance T. Autrement dit: il existe une constante C, > 1, telle que
pour toute boule B(&,r) centrée sur A, on ait:

C;'r'< v (B(§, 1) < Curt.

Rappelons les principales étapes de la démonstration de ces résultats:

] ny
Soit ap = lim —log#{geT||x — gx|x < n}.S.J. Patterson a exhibé

n— +
une mesure aoy-conforme (voir par exemple [Su], p. 175). D’autre part
d’aprés D. Sullivan, si {p,,x € X} est une a-mesure conforme, alors la
i, mesure d’une boule de A est proportionnelle a son rayon a la puissance o
(c’est le lemme de I’ombre [Su], p. 180). Dés lors par un principe général, o
(et en particulier oy) est égal a 1, les mesures u, et v, sont absolument
continues ’une par rapport a ’autre et leurs densités sont bornées. Ainsi on
obtient 2.7.5. Maintenant puisque v, est finie, {v,, x € X} est une T-mesure
conforme (voir 2.6.3). Deux t-mesures conformes absolument continues 1’une

par rapport a l’autre sont égales (voir [Su], p. 181). Le théoréme 2.7.4
en découle.

2.8. FLOT GEODESIQUE ASSOCIE A UNE ACTION QUASI-CONVEXE

Soit X un CAT (—1)-espace, sur lequel agit I" par isométrie de maniére
quasi-convexe. Notons A I’ensemble limite de I" dans 8.X . Définissons GA

I’ensemble des géodésiques (paramétrées) de X, dont les extrémités
appartiennent a A:

GA = {y: R — X isométries avec y(— ®) € A, y(+ ®) e A}.

Et €quipons-le de la métrique suivante:

ly — v’

e e~ Il
GA:§ ly() =y (8) |x 5 dt .

— o

La topologie associée est celle de la convergence uniforme sur les compacts.




94 M. BOURDON

En effet, on a:

2.8.1. PROPOSITION. Quel que soit T > 0, alors:

e T sup |y(®) -7 @I|x<|y -7 |oa

te[-T,T]
< sup |y —y'(D)|x+2eT.
te[-T,T)
2.8.2. Preuve. L’inégalité de droite est un simple calcul. L’inégalité
de gauche provient de 1’inégalité de Jensen appliquée a la fonction convexe
(voir 1.3):

iy — v (@) ]x. 0O

Clairement, le groupe I' agit par isométries sur (GA, | |g») de maniére
proprement discontinue. L’espace métrique quotient:

%€ =GA/T

est I’espace du flot géodésique, associé a la paire (X, I'). Notons que % est
compact. En effet, I" est quasi-convexe, donc le quotient de I’enveloppe
de Gromov de A par I' est compact (voir 1.8.6).

Le flot géodésique de GA est le groupe a un paramétre d’homéo-
morphisme {®;, T € R}, provenant de ’action naturelle de R sur GA. Il est
défini par:

(2.8.3) ®r(y) =vr, avec yvr(f)=yv(+7T).
Remarquons que pour tout Te R, g eI, et y € GA:
(2.8.4) @r(gy) =897 (v).

Le flot géodésique de ¥ est le groupe a un parametre d’homéomorphismes,
induit sur % par la relation 2.8.4. On le notera encore {®7, T € R}.

Par analogie aux flots d’Anosov, on définit les sous-ensembles fortement
stables et fortement instables de (GA, ®7). En vy € GA, ils sont respec-
tivement définis par:

Wss(y) = {n e GA||®r(n) — Or(y) |GA::O}

wus(y) Z{Tl e GA||®_r(M) — ©_7(Y) |6a ::0} ‘

Ils forment un feuilletage ®,-invariant de GA. D’aprés 2.3.1, ils sont liés
aux horospheéres de la maniére suivante:
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wss(y) = {n € GA|Nn(0) € Hy@),y(+ )N+ ) = y(+ o)}
wuu(y) = {n e GA|Nn(0) € Hy),y(- =), N(— ) = y(— )} .

Observons qu’ils sont canoniquement homéomorphes a A privé d’un point.
On définit les sous-ensembles fortement stables et instables de (%, ®r) par:

(2.8.5)

2.8.6. DEFINITION. Soit w la projection de GA sur &, alors:

wss(n(y)) = m(W*(y))
W (n(y)) = (W (y)) .
Le sous-ensemble faiblement stable (resp. instable) de GA en vy, est la

réunion des sous-ensembles fortement stables (resp. instables), le long de
I’orbite de y sous ® ;. En d’autres termes:

Ws(y) = U Ws(@r(y)) ={neGA|[n(+ ) =y(+x)}

TeR

wey) = U W (@r(y)) = {n e GA[n(= ) = y(- »)}.

TeR

De méme, sont définis les sous-ensembles faiblement stables et instables de Z.
D’apres la définition 2.8.6, ils sont correspondance avec ceux de GA, via la
projection de GA sur %.

2.9. LE PARAMETRAGE DE HOPF DE (%, ®1)

Choisissons une origine x dans X. Soit A la diagonale de A X A. On définit
une application de (A X A — A) X R dans GA, de la maniére suivante: a

w

£_

FIGURE 5
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