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2.7.5. Théorème.

a) Ladimension t est égale au taux de croissance de T dans X.

C'est-à-dire:

t lim — log # {geT | | x - g^«} •

n -> + oo ïl

b) La vx-mesure d'une boule de (A, dx), est proportionnelle à son rayon
à la puissance t. Autrement dit: il existe une constante Cx ^ 1, telle que

pour toute boule B(^,r) centrée sur A, on ait:

C;lC< vx(B(Z,,r))<
Rappelons les principales étapes de la démonstration de ces résultats:

Soit a0 lim - log #{g eT|| a - gx\x<«}•S. J. Patterson a exhibé
n -* + oo n

une mesure a0-conforme (voir par exemple [Su], p. 175). D'autre part
d'après D. Sullivan, si {\iX9x e X} est une a-mesure conforme, alors la

[ix mesure d'une boule de A est proportionnelle à son rayon à la puissance a

(c'est le lemme de l'ombre [Su], p. 180). Dès lors par un principe général, a
(et en particulier a0) est égal à t, les mesures [ix et v* sont absolument
continues l'une par rapport à l'autre et leurs densités sont bornées. Ainsi on
obtient 2.7.5. Maintenant puisque vx est finie, {vx,x e X} est une T-mesure
conforme (voir 2.6.3). Deux T-mesures conformes absolument continues l'une

par rapport à l'autre sont égales (voir [Su], p. 181). Le théorème 2.7.4

en découle.

2.8. Flot géodésique associé à une action quasi-convexe

Soit X un CAT(-l)-espace, sur lequel agit T par isométrie de manière
quasi-convexe. Notons A l'ensemble limite de T dans dX Définissons GA
l'ensemble des géodésiques (paramétrées) de X, dont les extrémités
appartiennent à A:

G A {y: R - X isométries avec y(-oo) eA, y(+oo) eA}
Et équipons-le de la métrique suivante:

i T",Iy-yIga J \y(t) -
La topologie associée est celle de la convergence uniforme sur les compacts.
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En effet, on a:

2.8.1. Proposition. Quel que soit T ^ 0, alors:

e~T sup |y(0 - Y'(0|x< |y - Y'\ga
t e[-T,T]

«S sup |y(0 - Y'(0 U + 2
t e [ - T,T)

2.8.2. Preuve. L'inégalité de droite est un simple calcul. L'inégalité
de gauche provient de l'inégalité de Jensen appliquée à la fonction convexe

(voir 1.3):

t^>|y(0- Y'(0 \X

Clairement, le groupe T agit par isométries sur (GA, | |GA) de manière

proprement discontinue. L'espace métrique quotient:

f GA/Y

est l'espace du flot géodésique, associé à la paire (X, T). Notons que % est

compact. En effet, T est quasi-convexe, donc le quotient de l'enveloppe
de Gromov de A par T est compact (voir 1.8.6).

Le flot géodésique de GA est le groupe à un paramètre d'homéo-

morphisme {Or, Te R}, provenant de l'action naturelle de R sur GA. Il est

défini par:

(2.8.3) Or(y) y r, avec y T(t) y (t + T)

Remarquons que pour tout T e R, g e T, et y e GA:

(2.8.4) Or(gY) Y) •

Le flot géodésique de ^ est le groupe à un paramètre d'homéomorphismes,
induit sur f7 par la relation 2.8.4. On le notera encore {®r, Te R}.

Par analogie aux flots d'Anosov, on définit les sous-ensembles fortement
stables et fortement instables de (GA, Or). En y e GA, ils sont
respectivement définis par:

Wss (y)

Wuu(Y)

T1 6 GA I I Oy (il) - Or(Y) GA ^ 0
T -> + 00

T| 6 GA I | 0_y(Tl) - 0_r(Y) GA

Ils forment un feuilletage Or-invariant de GA. D'après 2.3.1, ils sont liés

aux horosphères de la manière suivante:
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(2 8 5)
WSS(y) {T1 6 GA 6 //v«».r<+»>>'n(+ °°) Y(+ «>)}

W"«(y) {rj e GAh(O) eHy(0),rl°°)oo)}

Observons qu'ils sont canoniquement homéomorphes à A privé d'un point.
On définit les sous-ensembles fortement stables et instables de (If, Or) par:

2.8.6. Définition. Soit n la projection de GA sur alors:

Wss (jz (y)) n(Wss(y))

Wuu(n(yj) n(Wuu(yj)

Le sous-ensemble faiblement stable (resp. instable) de GA en y, est la

réunion des sous-ensembles fortement stables (resp. instables), le long de

l'orbite de y sous Or. En d'autres termes:

Ws(y) U JE55(Of(y)) {tj g GA | r|(+ oo) y(+ oo)}
Te R

Wu(y) U Wuu(Of(y)) {rj g GA | r| — oo) y — oo)}
Te R

De même, sont définis les sous-ensembles faiblement stables et instables de 9\
D'après la définition 2.8.6, ils sont correspondance avec ceux de GA, via la

projection de GA sur

2.9. Le paramétrage de Hopf de (^, Or)

Choisissons une origine x dans X. Soit A la diagonale de A x A. On définit
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