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92 M. BOURDON

D’apres ’exemple (a), on a:
[£/(E) | = eBexn) = eBexig='n)
Par ailleurs, la composée A = t o p vérifie h—1x = g~ 1x, d’ou:

le' @ 1= 1@ 1o/ | =@ | = estnen

2.7. MESURES CONFORMES SUR L’ENSEMBLE LIMITE D’UN GROUPE QUASI-
CONVEXE

Soit I' un groupe quasi-convexe d’isométries de X (voir 1.8), non
¢lémentaire. Son ensemble limite A hérite de la structure conforme de 8.X.
Notons p(x, y, &) le facteur conforme en & € A, de 1’application identité
de (A, d,) sur (A, d,). D’aprés le corollaire 2.6.3 (ou plutdt sa preuve),
on a:

(2.7.1) plx, y, &) =eBexn) |

D’autre part, d’apres le corollaire 2.6.3, I agit par transformations conformes
sur (A, d,). Le facteur conforme de g e I' en &, est:

(2.7.2) g’ (E) |x=p(x, g7 'x, &) .

Comme dans le cas des groupes convexes cocompacts d’isométries
de Hg, on définit la notion de mesure a-conforme sur A (voir [Su], [N],
et [C] pour une notion analogue sur les espaces hyperboliques généraux):

La collection de mesures {u,,x € X} est une mesure o-conforme,
si pour tout x € X, u, est finie non nulle, de support inclus dans A, et si
pour tout x,ye X et geI:

(2.7.3) wy = [p(x,», )] 1,
g*U'xz Wg-1x = lg’ ;IJ.X .

La théorie des mesures conformes est essentiellement la méme que pour les
groupes convexes cocompacts de Hy. La seule différence est qu’une boule
de A n’est pas en général une ombre. Néanmoins elle en est presque une
d’aprés 1.6.2. Soit © la dimension de Hausdorff de (A, d,). Soit v, la
t-mesure de Hausdorff de (A, d,). On a:

2.7.4. THEOREME. La collection {v,,xe X} est une t-mesure
conforme. De plus, toute mesure conforme est une t-mesure conforme,
égale a une constante prées a {v,,x € X}.

De plus:
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2.7.5. THEOREME.

a) La dimension T est égale au taux de croissance de T dans X.
C’est-a-dire:

— 1
1= lim —log#{gel||x—gx|x<n}.
n—+o N
b) La v,-mesure d’une boule de (A, d,), est proportionnelle a son rayon
d la puissance T. Autrement dit: il existe une constante C, > 1, telle que
pour toute boule B(&,r) centrée sur A, on ait:

C;'r'< v (B(§, 1) < Curt.

Rappelons les principales étapes de la démonstration de ces résultats:

] ny
Soit ap = lim —log#{geT||x — gx|x < n}.S.J. Patterson a exhibé

n— +
une mesure aoy-conforme (voir par exemple [Su], p. 175). D’autre part
d’aprés D. Sullivan, si {p,,x € X} est une a-mesure conforme, alors la
i, mesure d’une boule de A est proportionnelle a son rayon a la puissance o
(c’est le lemme de I’ombre [Su], p. 180). Dés lors par un principe général, o
(et en particulier oy) est égal a 1, les mesures u, et v, sont absolument
continues ’une par rapport a ’autre et leurs densités sont bornées. Ainsi on
obtient 2.7.5. Maintenant puisque v, est finie, {v,, x € X} est une T-mesure
conforme (voir 2.6.3). Deux t-mesures conformes absolument continues 1’une

par rapport a l’autre sont égales (voir [Su], p. 181). Le théoréme 2.7.4
en découle.

2.8. FLOT GEODESIQUE ASSOCIE A UNE ACTION QUASI-CONVEXE

Soit X un CAT (—1)-espace, sur lequel agit I" par isométrie de maniére
quasi-convexe. Notons A I’ensemble limite de I" dans 8.X . Définissons GA

I’ensemble des géodésiques (paramétrées) de X, dont les extrémités
appartiennent a A:

GA = {y: R — X isométries avec y(— ®) € A, y(+ ®) e A}.

Et €quipons-le de la métrique suivante:

ly — v’

e e~ Il
GA:§ ly() =y (8) |x 5 dt .

— o

La topologie associée est celle de la convergence uniforme sur les compacts.
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