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92 M. BOURDON

D'après l'exemple (a), on a:

I f (£) I eB^{x,y) _ eB%{x,g~lx)
<

Par ailleurs, la composée h t o p vérifie h~lx g~lx, d'où:

1 g'&) I 11'(%) I Hp'&) « 11'(£) Il

2.7. Mesures conformes sur l'ensemble limite d'un groupe quasi-
convexe

Soit T un groupe quasi-convexe d'isométries de X (voir 1.8), non
élémentaire. Son ensemble limite A hérite de la structure conforme de dX.
Notons p(x,y,^) le facteur conforme en Çe A, de l'application identité
de (A, dx) sur (A, dy). D'après le corollaire 2.6.3 (ou plutôt sa preuve),
on a:

(2.7.1) p(x, y, Ç)

D'autre part, d'après le corollaire 2.6.3, F agit par transformations conformes

sur (A, dx). Le facteur conforme de g e T en est:

(2.7.2) \g'(&)\**= p{x,g~lx,t,)

Comme dans le cas des groupes convexes cocompacts d'isométries
de HJ, on définit la notion de mesure a-conforme sur A (voir [Su], [N],
et [C] pour une notion analogue sur les espaces hyperboliques généraux):

La collection de mesures {\ix,xeX} est une mesure a-conforme,
si pour tout v 6 X, \xx est finie non nulle, de support inclus dans A, et si

pour tout x, y e X et g e F:

QU) V?[p{x,y,.)]a|ix
Us-'* |g'l>* •

La théorie des mesures conformes est essentiellement la même que pour les

groupes convexes cocompacts de Hj. La seule différence est qu'une boule
de A n'est pas en général une ombre. Néanmoins elle en est presque une

d'après 1.6.2. Soit t la dimension de Hausdorff de (A,dx). Soit vx la

T-mesure de Hausdorff de (A, dx). On a:

2.7.4. Théorème. La collection {vX)xeX} est une x-mesure

conforme. De plus, toute mesure conforme est une t-mesure conforme,

égale à une constante près à {vx,x e X}.

De plus:
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2.7.5. Théorème.

a) Ladimension t est égale au taux de croissance de T dans X.

C'est-à-dire:

t lim — log # {geT | | x - g^«} •

n -> + oo ïl

b) La vx-mesure d'une boule de (A, dx), est proportionnelle à son rayon
à la puissance t. Autrement dit: il existe une constante Cx ^ 1, telle que

pour toute boule B(^,r) centrée sur A, on ait:

C;lC< vx(B(Z,,r))<
Rappelons les principales étapes de la démonstration de ces résultats:

Soit a0 lim - log #{g eT|| a - gx\x<«}•S. J. Patterson a exhibé
n -* + oo n

une mesure a0-conforme (voir par exemple [Su], p. 175). D'autre part
d'après D. Sullivan, si {\iX9x e X} est une a-mesure conforme, alors la

[ix mesure d'une boule de A est proportionnelle à son rayon à la puissance a

(c'est le lemme de l'ombre [Su], p. 180). Dès lors par un principe général, a
(et en particulier a0) est égal à t, les mesures [ix et v* sont absolument
continues l'une par rapport à l'autre et leurs densités sont bornées. Ainsi on
obtient 2.7.5. Maintenant puisque vx est finie, {vx,x e X} est une T-mesure
conforme (voir 2.6.3). Deux T-mesures conformes absolument continues l'une

par rapport à l'autre sont égales (voir [Su], p. 181). Le théorème 2.7.4

en découle.

2.8. Flot géodésique associé à une action quasi-convexe

Soit X un CAT(-l)-espace, sur lequel agit T par isométrie de manière
quasi-convexe. Notons A l'ensemble limite de T dans dX Définissons GA
l'ensemble des géodésiques (paramétrées) de X, dont les extrémités
appartiennent à A:

G A {y: R - X isométries avec y(-oo) eA, y(+oo) eA}
Et équipons-le de la métrique suivante:

i T",Iy-yIga J \y(t) -
La topologie associée est celle de la convergence uniforme sur les compacts.
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