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Figure 4

2.6. Structure conforme sur dX

Nous montrons maintenant que la famille de métriques {dX9x e X},
définit une structure conforme sur dX. On a:

2.6.1. Proposition. Soit x une origine dans X et y, z deux

éléments de X. La fonction sur (dX, dx), définie par:

z)

est lipschitzienne.

2.6.2. Preuve. D'après les relations 2.2.1 et 2.2.2, on a:

Bfy, z) - B^x, y) + B^(x,z)

Aussi, il suffit de montrer que la fonction:

y)

est lipschitzienne sur (9X, dx). D'après la définition des métriques dx et

'd'après la relation 2.4.2, on a:

ou encore

(1) B^x,y)2Iogd,(Ç,J;') - 21ogdx«,É') -
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Supposons que dX ne soit pas réduit à un point. Soit alors F un petit
voisinage compact de Ç, et un élément fixé en dehors de F. La fonction:

^2 log

est lipschitzienne sur (V,dx). Les métriques dx et dy étant des métriques
visuelles de paramètres respectifs (x, é) et (y, e), elles sont Lipschitz-
équivalentes (voir 1.5.3.b). Donc la fonction

^21og^(^')
est également lipschitzienne sur (F, dx). Dès lors, par la relation (1), la
fonction:

B^(x,y)

est lipschitzienne sur (F, dx). Maintenant la compacité de (9X,dx) montre
qu'elle est lipschitzienne sur dX.

2.6.3. Corollaire.
a) Quels que soient les éléments x et y de X, les métriques dx et dy

sont conformes.

b) Soit g une isométrie de X. Alors g est une application conforme
de (dX, dx), dont le facteur conforme en Z, est:

| g'(£)\x~
2.6.4. Preuve:

a) D'après la relation 2.4.2 et la définition des métriques dx, on a:

i (Bt(x,y) + Bi'{x,y))

Donc la proposition 2.6.1 donne:

WM -, gB^x.y)

ce qui montre que dx et dy sont conformes.

b) Puisque g est une isométrie de X, on a:

(SÉl *£')*= (ÉlÉVi*.
Donc:

et la fin de la preuve est identique au (a).
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2.6.5. Exemples.

a) Prenons X Hj et x le centre du modèle en boule. Le groupe Isom (H£)

agit par transformations conformes sur la sphère S" munie de la métrique

euclidienne. Notons |jg'(^)|| le facteur conforme en £, d'un élément g

de Isoiu(Hr). D'après l'exemple 2.5.9(a) on a:

II*'«) Il k'(yl, e^'rll) •

b) Prenons X H£ et normalisons la métrique afin que sa courbure soit

comprise entre —4 et —1. Soit xle centre du modèle en boule.

Le groupe Isom(H£) laisse invariant le champ d'hyperplans {P^eS2"-1},
défini par:

Pk {ueP^S2"-1; ;,w) 0}

où h est la forme hermitienne de C":
n

h(k, u) Y, S/"/ •

i= 1

Il agit par transformations conformes sur {P^, E, g S2n~ 4 muni de la

métrique euclidienne. Notons |jg'(l)ll le facteur conforme sur P^ d'un
élément g de Isom(H£). Nous allons voir qu'à nouveau:

\\g'&) 11=

Pour ce faire, ramenons-nous à l'exemple a) par un argument de

D. Sullivan ([Su], p. 176). Observons tout d'abord que || g'(£) || ne dépend que
de g~lx. En effet, si h e Isom (H £) vérifie h~lx g~lx, alors la composée

g o h ~1 fixe x le centre du modèle en boule, donc g o h~l appartient à

U{n) et:

Wg'tt) 11 11 A'(S) Il

Choisissons donc judicieusement h. Notons y l'intersection de l'horo-
sphère //^, basée en contenant g~lx, avec la géodésique (xÇ). Le
stabilisateur de H^ dans Isom (Hnc) agit transitivement sur Hde plus le facteur
conforme de ses éléments en P^ est 1. Soit p un élément de Stab(Zf^),
vérifiant

p{g~lx)y

Soit aussi une copie de HJ contenant la géodésique (xÇ). L'espace tangent
à son bord en £, est contenu dans Pt. Soit t un élément de Isom (H£) qui fixe
cette copie et envoie y sur x.
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D'après l'exemple (a), on a:

I f (£) I eB^{x,y) _ eB%{x,g~lx)
<

Par ailleurs, la composée h t o p vérifie h~lx g~lx, d'où:

1 g'&) I 11'(%) I Hp'&) « 11'(£) Il

2.7. Mesures conformes sur l'ensemble limite d'un groupe quasi-
convexe

Soit T un groupe quasi-convexe d'isométries de X (voir 1.8), non
élémentaire. Son ensemble limite A hérite de la structure conforme de dX.
Notons p(x,y,^) le facteur conforme en Çe A, de l'application identité
de (A, dx) sur (A, dy). D'après le corollaire 2.6.3 (ou plutôt sa preuve),
on a:

(2.7.1) p(x, y, Ç)

D'autre part, d'après le corollaire 2.6.3, F agit par transformations conformes

sur (A, dx). Le facteur conforme de g e T en est:

(2.7.2) \g'(&)\**= p{x,g~lx,t,)

Comme dans le cas des groupes convexes cocompacts d'isométries
de HJ, on définit la notion de mesure a-conforme sur A (voir [Su], [N],
et [C] pour une notion analogue sur les espaces hyperboliques généraux):

La collection de mesures {\ix,xeX} est une mesure a-conforme,
si pour tout v 6 X, \xx est finie non nulle, de support inclus dans A, et si

pour tout x, y e X et g e F:

QU) V?[p{x,y,.)]a|ix
Us-'* |g'l>* •

La théorie des mesures conformes est essentiellement la même que pour les

groupes convexes cocompacts de Hj. La seule différence est qu'une boule
de A n'est pas en général une ombre. Néanmoins elle en est presque une

d'après 1.6.2. Soit t la dimension de Hausdorff de (A,dx). Soit vx la

T-mesure de Hausdorff de (A, dx). On a:

2.7.4. Théorème. La collection {vX)xeX} est une x-mesure

conforme. De plus, toute mesure conforme est une t-mesure conforme,

égale à une constante près à {vx,x e X}.

De plus:
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