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S

Ficure 4

2.6. STRUCTURE CONFORME SUR 0.X

Nous montrons maintenant que la famille de métriques {d,,x € X},
définit une structure conforme sur 8.X. On a:

2.6.1. PROPOSITION. Soit x wune origine dans X et y,z deux
éléments de X. La fonction sur (0X,d,), définie par:

& Be(»,2)

est lipschitzienne.

2.6.2. Preuve. D’aprés les relations 2.2.1 et 2.2.2, on a:
By(y,2) = — Be(x,») + Be(x, 2) .
Aussi, il suffit de montrer que la fonction:
& Be(x, )

est lipschitzienne sur (00X, d,). D’apres la définition des métriques d, et
d’apres la relation 2.4.2, on a:

1

dy(5,8") = dx(§,8)e?

(Be (x,y) + By (x,))

ou €ncore

(1) Be(x,y) = 2logd,(§,8") — 2logd.(E,E") — Be:(x,y) .
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Supposons que 3.X ne soit pas réduit a un point. Soit alors V un petit
voisinage compact de &, et £ un élément fixé en dehors de V. La fonction:

¢~ 2logd«(E,8)

est lipschitzienne sur (V,d,). Les métriques d, et d, étant des métriques
visuelles de paramétres respectifs (x,e) et (y,e), elles sont Lipschitz-
équivalentes (voir 1.5.3.b). Donc la fonction

&~ 2logd,(8,¢8")

est également lipschitzienne sur (V,d,). Dés lors, par la relation (1), la
fonction:

&HBé(x,y)

est lipschitzienne sur (V, d,). Maintenant la compacité de (0.X, d,) montre
qu’elle est lipschitzienne sur 8.X. [

2.6.3. COROLLAIRE.

a) Quels que soient les éléments x et y de X, les métriques d, et d,
sont conformes.

b) Soit g wune isométrie de X. Alors g est une application conforme
de (0X,d,), dont le facteur conforme en E est:

|gl(i) |x —_ eBé(x,g—lx) .
2.6.4. Preuve:

a) D’aprés la relation 2.4.2 et la définition des métriques d,, on a:

L (Be ) + Ber ()

dy(§,8') =dx(§,8)e?

Donc la proposition 2.6.1 donne:

HEE) |

dx(§,87) &'°

ce qui montre que d, et d, sont conformes.

b) Puisque g est une isométrie de X, on a:
(88188 = (§]&)g-1x -
Donc:
d. (88, 88"} = dg-1:(E, )

et la fin de la preuve est identique au (a). [
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2.6.5. EXEMPLES.

a) Prenons X = Hj et x le centre du modéle en boule. Le groupe Isom (Hg)
agit par transformations conformes sur la sphere S” munie de la métrique
euclidienne. Notons | g"(£) | le facteur conforme en & d’un clément g
de Isom (Hg). D’aprés ’exemple 2.5.9(a) on a:

le’(&) “ = ‘g'(&) | = eBelx,g71x)

b) Prenons X = H¢ et normalisons la métrique afin que sa courbure soit
comprise entre —4 et — 1. Soit x le centre du modéle en boule.

Le groupe Isom(HZ) laisse invariant le champ d’hyperplans {P:,€ € S},
défini par:

Pe={ueTS"1'; h(§,u) =0}

ou A est la forme hermitienne de C”:

n
h(En u) = Z Fﬁil_li .
i=1
Il agit par transformations conformes sur {P;,& € S?"~!} muni de la
métrique euclidienne. Notons | g’(€) | le facteur conforme sur P d’un
élément g de Isom (H¢). Nous allons voir qu’a nouveau:

lg' (&) [ = ePete™ = | g"(8) | -

Pour ce faire, ramenons-nous a I’exemple a) par un argument de
D. Sullivan ([Su], p. 176). Observons tout d’abord que || g’(§) || ne dépend que
de g~ 'x. En effet, si & € [som (H) vérifie A~ 'x = g~ 'x, alors la composée
g o h~! fixe x le centre du modele en boule, donc g © A~! appartient a
U(n) et:

le'@ I =1rE].

Choisissons donc judicieusement 4. Notons y Dintersection de [’horo-
sphére H;, basée en &, contenant g~!x, avec la géodésique (x£). Le stabi-
lisateur de H dans Isom (H¢) agit transitivement sur H;, de plus le facteur

conforme de ses €léments en Py est 1. Soit p un élément de Stab(H),
vérifiant

p(g~'x)=y.

Soit aussi une copie de Hy contenant la géodésique (x&). L’espace tangent
a son bord en ¢ est contenu dans Py . Soit # un élément de Isom (H{) qui fixe
cette copie et envoie y sur x.
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D’apres ’exemple (a), on a:
[£/(E) | = eBexn) = eBexig='n)
Par ailleurs, la composée A = t o p vérifie h—1x = g~ 1x, d’ou:

le' @ 1= 1@ 1o/ | =@ | = estnen

2.7. MESURES CONFORMES SUR L’ENSEMBLE LIMITE D’UN GROUPE QUASI-
CONVEXE

Soit I' un groupe quasi-convexe d’isométries de X (voir 1.8), non
¢lémentaire. Son ensemble limite A hérite de la structure conforme de 8.X.
Notons p(x, y, &) le facteur conforme en & € A, de 1’application identité
de (A, d,) sur (A, d,). D’aprés le corollaire 2.6.3 (ou plutdt sa preuve),
on a:

(2.7.1) plx, y, &) =eBexn) |

D’autre part, d’apres le corollaire 2.6.3, I agit par transformations conformes
sur (A, d,). Le facteur conforme de g e I' en &, est:

(2.7.2) g’ (E) |x=p(x, g7 'x, &) .

Comme dans le cas des groupes convexes cocompacts d’isométries
de Hg, on définit la notion de mesure a-conforme sur A (voir [Su], [N],
et [C] pour une notion analogue sur les espaces hyperboliques généraux):

La collection de mesures {u,,x € X} est une mesure o-conforme,
si pour tout x € X, u, est finie non nulle, de support inclus dans A, et si
pour tout x,ye X et geI:

(2.7.3) wy = [p(x,», )] 1,
g*U'xz Wg-1x = lg’ ;IJ.X .

La théorie des mesures conformes est essentiellement la méme que pour les
groupes convexes cocompacts de Hy. La seule différence est qu’une boule
de A n’est pas en général une ombre. Néanmoins elle en est presque une
d’aprés 1.6.2. Soit © la dimension de Hausdorff de (A, d,). Soit v, la
t-mesure de Hausdorff de (A, d,). On a:

2.7.4. THEOREME. La collection {v,,xe X} est une t-mesure
conforme. De plus, toute mesure conforme est une t-mesure conforme,
égale a une constante prées a {v,,x € X}.

De plus:
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