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84 M. BOURDON

Soit maintenant £, £’ deux points distincts de 8.X, x un point de X, et
p appartenant a (£&’). Suivant V. Kaimanovich [K], considérons I’expression:

%(B{;(X,p) + Bi'(x’p)) .

Elle est indépendante du point p choisi sur (££’). On I’appellera produit de
Gromov de & et £’ relativement & x, et on la notera (¢ | £'),. (Voir figure 1.)

FIGURE 1
Notons que
(2.4.1) (&)= (E"]€)x
(2.4.2) (E1€), = (E]E)x — 5 (Be(x, ) + B/ (x,))) .

Le lecteur vérifiera sans peine la proposition suivante:

2.4.3. PROPOSITION. Soit ye[xt) et y' e€[xf’). Le produit
de Gromov (y|y’). converge vers (§£|&’)., lorsque y et y' tendent
respectivement vers & et &’.

2.5. UNE FAMILLE DE METRIQUES VISUELLES SUR 00X

Soit x une origine dans X. Pour &, &’ € 0.X, définissons:

di(§,8) =eClEx si £ #E
d.(£,&%) = 0 sinon .
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2.5.1. THEOREME. d, est une métrique sur 0X.

2.5.2. Remarque. d, est une métrique visuelle de parameétres (x, e)
(voir 1.5.1). En effet, ’expression

[(B]&7) — d(x, (EE)) |

est majorée par une constante universelle (voir [G-H], chapitre 2, lemme 17).

Afin de montrer le théoréme, nous introduisons un angle de comparaison,
ou plutdt son sinus: Soit y, ¥y’ deux éléments de X — {x}. Soit (xyy’) un
triangle de comparaison de (xyy") dans Hf{. Posons:

T
s
(2.5.3) ay(y,y') = siny 2y .

14

On peut également exprimer o,(y,y’) sans recourir a un triangle de
comparaison. En effet, d’aprés les formules de trigonométrie dans Hé,
on a:

W (chly =y |—=ch(x—y|—-]x—y D\
o (¥, ¥) = :

2sh|x — y|sh|x -y’

Le théoréme découlera des deux lemmes suivants:

2.5.4. LEMME. Soit S(x,r) la sphére de X, de centre x et de
rayon r. Sur S(x,r), r>0, o, estune métrique.

2.5.5. Preuve de 2.5.4. Seule I’inégalité triangulaire n’est pas triviale.
Soient donc y, z, f appartenant a S(x, r). D’aprés la relation 2.5.3, les valeurs
de o appartiennent a [0, 1]. Aussi, pour montrer ’inégalité triangulaire:

0x(V, 1) < 0x(D, 2) + 0x(3, 1),
supposons:
(1) ax(y,2) + a,(z, 1) < 1.
Soit X, y,z,f € HE, tels que:

a) (xyz) et (xzt) soient des triangles de comparaison de (xyz) et de (xz?).
b) (xz) sépare y et ¢ (voir figure 2).
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FIGURE 2
D’aprés 2.5.3, on a:
T TN
R4 . Zxt
@) 0 (3, 2) = Sin o, ay(z, £) = sin o .
2 2
L’hypothése (1) implique:
~ —
yxz +zxt <m,
de plus:
x-yl=Ix-z[=[x-1],

et (xz) sépare y et ¢. Donc le segment [y 7] coupe [xzZ] en un unique
point u. Soit u € [xz], le point correspondant & u. L’inégalité triangulaire
et I’inégalité CAT (— 1) donnent alors:

<|y—ul+|u-1tf

<y —ul+|u -t

=y -7].
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D’ou

ch|y—t|-ch(fx—y|=|x-tD\"?
“"(y’t)z( 2sh|x — y|sh(|x — ¢ )
<th—ﬂ—de—f%4f—ﬂum'
= 2sh|¥ — 7 |sh(|x — 7|

c’est-a-dire encore:
T

- yxt
(3) a(y,t) < sin —

P e
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Or yxt =yxz + yxit, et sin(a + b) < sina + sinb, pour a, b appartenant

a [O,g] . Donc (2) et (3) donnent:

0 (¥, 1) < 0e(1,2) + ax(z, 1) . [

2.5.6. LEMME. Soient y € [x§),y’ € [xt’), alors:
lim oa,(y,y") =d:(§, &) .

y—=£
yl_,gl

2.5.7. Preuve de 2.5.6. On a:

ch|y -y’ ch(lx —y|-|x—-y')

Zsh|x—y|sh|x—y’|— 2sh|x — y|sh|x -y’

ay(y,y) = (

Un calcul montre que:

ch(lx-y|-|x-»"]

= s (coth |x — y|coth|x —y'| - 1).

2sh|x — y|sh|x -y’

Cette expression tend vers 0 lorsque y — &, y" — £’. Par ailleurs:

ch|y -y
2sh|x — y|sh|x -y’

~ely=yl=lx-yl-lx-y'| = g-201¥"x ,

or d’apres la proposition 2.4.3, on a:

lim (y|y )= (E|&)x-
y—£
y e

D’ou le lemme. [

)1/2
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2.5.8. Preuve du théoréme 2.5.1. Seule I’inégalité triangulaire n’est pas
triviale. Elle résulte des lemmes 2.5.4 et 2.5.6. [

2.5.9. EXEMPLES.

a) Prenons X = Hy. Soit x le centre du modéle en boule. Alors:
/T

do(, £ = sin 2

7

est la moitié de la longueur du segment euclidien reliant & a £’ (voir figure 3).

FIGURE 3

Ce n’est pas la métrique naturelle sur 3.X, qui est la métrique angulaire.

, . . . o1
Néanmoins elle lui est conforme, de facteur conforme constant €gal a ;5.

b) Si X est un arbre réel:
dx(E.,, E:’) = e~ (E|E, ,

ou (£]&"), est la longueur du trajet que font ensemble les deux rayons
géodésiques issus de x et allant vers & et &' (voir figure 4).
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S

Ficure 4

2.6. STRUCTURE CONFORME SUR 0.X

Nous montrons maintenant que la famille de métriques {d,,x € X},
définit une structure conforme sur 8.X. On a:

2.6.1. PROPOSITION. Soit x wune origine dans X et y,z deux
éléments de X. La fonction sur (0X,d,), définie par:

& Be(»,2)

est lipschitzienne.

2.6.2. Preuve. D’aprés les relations 2.2.1 et 2.2.2, on a:
By(y,2) = — Be(x,») + Be(x, 2) .
Aussi, il suffit de montrer que la fonction:
& Be(x, )

est lipschitzienne sur (00X, d,). D’apres la définition des métriques d, et
d’apres la relation 2.4.2, on a:

1

dy(5,8") = dx(§,8)e?

(Be (x,y) + By (x,))

ou €ncore

(1) Be(x,y) = 2logd,(§,8") — 2logd.(E,E") — Be:(x,y) .
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