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84 M. BOURDON

Soit maintenant Ç' deux points distincts de dX, x un point de X, et

p appartenant à (££')• Suivant V. Kaimanovich [K], considérons l'expression:

\{B%{x,p)+ Bv(x,p))
Elle est indépendante du point p choisi sur (££')• On l'appellera produit de

Gromov de et relativement à x, et on la notera (£, | £')*. (Voir figure 1.)

Notons que

(2.4.1) OU S')* -(VIS)*
(2.4.2) a 14'), ik I V)x - -2+ Bv(x,y))

Le lecteur vérifiera sans peine la proposition suivante:

2.4.3. Proposition. Soit y e [xl) et y' e [x£'). Le produit
de Gromov (y\y')x converge vers (£ | £')*, lorsque y et y' tendent

respectivement vers E, et

2.5. Une famille de métriques visuelles sur dX

Soit x une origine dans X. Pour dX, définissons:

dxa,$') e-Wh si

dx(%, V) 0 sinon
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2.5.1. Théorème. dx est une métrique sur dX.

2.5.2. Remarque. dx est une métrique visuelle de paramètres (x,e)
(voir 1.5.1). En effet, l'expression

l(ÇU')*- d(x,(^'))\

est majorée par une constante universelle (voir [G-H], chapitre 2, lemme 17).

Afin de montrer le théorème, nous introduisons un angle de comparaison,

ou plutôt son sinus: Soit y, y' deux éléments de X - {x}. Soit (xyy') un

triangle de comparaison de (xyy') dans Hr. Posons:

yxy'
(2.5.3) ax(y,y') sin ——

On peut également exprimer ax(y9y') sans recourir à un triangle de

comparaison. En effet, d'après les formules de trigonométrie dans Hr,
on a:

(ch \y - y' | - ch(| x - y\ - \x - y' |)\ 1/2
a x(y,y')

2sh I x - y I sh | jc - y' \

Le théorème découlera des deux lemmes suivants:

2.5.4. Lemme. Soit S(x,r) la sphère de X, de centre x et de

rayon r. Sur S(x, r), r > 0, ax est une métrique.

2.5.5. Preuve de 2.5.4. Seule l'inégalité triangulaire n'est pas triviale.
Soient donc y, z, t appartenant à S(x, r). D'après la relation 2.5.3, les valeurs
de a appartiennent à [0, 1]. Aussi, pour montrer l'inégalité triangulaire:

Ml, t) ^ ax(y, z) + ax(z, t)

supposons:

0) <*>x(y,z) + ax(z, t) < 1

Soit x,y,z,t e Hr, tels que:

a) (xyz) et (xzt) soient des triangles de comparaison de (xyz) et de (xzt).
b) (xz) sépare y et t (voir figure 2).
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t

y X Z Z X t
(2) o.x(y, z) sin ——, a sin ——.

2 2

L'hypothèse (1) implique:

yxz, + ZXt < 71

de plus:

|x - y \ | x - z | \x - t |

et (xz) sépare y et t Donc le segment [yt] coupe [xz] en un unique

point ü. Soit u e [xz], le point correspondant à ü. L'inégalité triangulaire
et l'inégalité CAT(-l) donnent alors:

\y - t\^\y - u\ + \u - t\
< | y - ü | + | ü - 11



FLOT GÉODÉSIQUE D'UN CAT(-1)-ESPACE 87

D'où

fch\y - t\- ch(\x - y \ - \ x - t \))l/2

1/2

(ch\y - t\ - ch(\x - y \ -\ x - t\)\
a* y,t

y 2sh | x - y | sh(| x - t | /
lch\y - t\ - chQx - y \ - \ x - t [)\

\ 2sh \x - y | sh(| x - t | /

c'est-à-dire encore:

yxt
(3) a (y, t) < sin-y- •

Or yxt y xz + yxt, et sin (a + b) ^ sin a + sinZ?, pour a, b appartenant
à [0,f] Donc (2) et (3) donnent:

ax(y, t) ^ ax(y, z) + ax(z, t)

2.5.6. Lemme. Soient y e [x£), y' e [x£'), alors:

lim ax(y,y') dx(Z»Z>') -

y^l

2.5.7. Preuve de 2.5.6. On a:

a
/ ch | y — y* 1 ch(\x-y\ - \ x-y'\)V/2

x
\^2sh | a - y | sh | x - y' | 2sh \ x - y \ sh \ x - y' \J

Un calcul montre que:

ch(\x-y\ — \x-y'\) x

—— — 2 (coth \x-y\coth I x - y I - l)
2sh|x-.y|sh|x-.y |

Cette expression tend vers 0 lorsque y -> y' Par ailleurs:

ch I yZyI

e\y-y'\-e-2(^b')x
5

2sh|x-.y|sh|x — j>'|

or d'après la proposition 2.4.3, on a:

lim (y\y')x tt\ï')x.

D'où le lemme.
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2.5.8. Preuve du théorème 2.5.1. Seule l'inégalité triangulaire n'est pas
triviale. Elle résulte des lemmes 2.5.4 et 2.5.6.

2.5.9. Exemples.

a) Prenons X HJ. Soit x le centre du modèle en boule. Alors:

txt'
dx(£>, £') sin -

2

est la moitié de la longueur du segment euclidien reliant £ à (voir figure 3).

Figure 3

Ce n'est pas la métrique naturelle sur dX, qui est la métrique angulaire.
Néanmoins elle lui est conforme, de facteur conforme constant égal à \.
b) Si X est un arbre réel:

où (i I Ç')* est la longueur du trajet que font ensemble les deux rayons
géodésiques issus de x et allant vers £ et (voir figure 4).
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Figure 4

2.6. Structure conforme sur dX

Nous montrons maintenant que la famille de métriques {dX9x e X},
définit une structure conforme sur dX. On a:

2.6.1. Proposition. Soit x une origine dans X et y, z deux

éléments de X. La fonction sur (dX, dx), définie par:

z)

est lipschitzienne.

2.6.2. Preuve. D'après les relations 2.2.1 et 2.2.2, on a:

Bfy, z) - B^x, y) + B^(x,z)

Aussi, il suffit de montrer que la fonction:

y)

est lipschitzienne sur (9X, dx). D'après la définition des métriques dx et

'd'après la relation 2.4.2, on a:

ou encore

(1) B^x,y)2Iogd,(Ç,J;') - 21ogdx«,É') -
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