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82 M. BOURDON

limite et du flot géodésique associés à une action isométrique, quasi-convexe,
d'un groupe hyperbolique sur X. On développe brièvement la notion de mesure
conforme sur l'ensemble limite, et on rappelle une construction de la mesure

d'entropie maximale du flot géodésique. Au paragraphe 2.11, nous montrons
le théorème 2.0.1.

2.1. Fonctions de Busemann

Soit r: [0, + oo[ X un rayon géodésique, et x e X. D'après l'inégalité
triangulaire, la fonction

f \ x - r(t) | - t

est décroissante et minorée par -|*-r(0)|. Appelons br(x) sa limite
en +oo. L'application br de X dans R ainsi définie, est la fonction de

Busemann associée au rayon r.

2.2. Distances horosphériques

Soit x,y e X, ^ e dX, et r: [0, + oo[ X un rayon géodésique d'extrémité

La quantité

lim \x - r(t) | - |y - r{t) \

t + oo

est égale à br(x) - br(y). Elle est indépendante du rayon r d'extrémité £,.

En effet si r' est un autre rayon d'extrémité par comparaison avec Hg,
on a:

(2.2.0) lim d{r'(t)9r) 0
t -> + oo

La limite B^(x,y) lim \x - r{t) | - |y - r(t) | est appelée distance
t + oo

horosphérique de x à y relativement à Elle vérifie:

(2.2.1) BK(x,y)= - BK{y,x)

(2.2.2) Bç(x, z) B^(x,y)+ (y, z)

(2.2.3)
'

B^(x,y)<\x - y

avec égalité si et seulement si y e [xÇ).

2.3. Horosphères

Considérons les ensembles de niveau de la fonction:

B-C(x, z)
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D'après 2.2.2, ils sont indépendants de x. Plus précisément, l'ensemble de

niveau t de fx est égal à l'ensemble de niveau t - de fy. Ce sont les

horosphères en Ç.

La distance horosphérique s'exprime maintenant de la manière
suivante: Soient Hx^ et Hy ^ les horosphères en £, passant par x et y. On

a d'après 2.2.3:

IB^y) | d(x,Hy,0 d{Hx^,Hy>0

Signalons aussi une autre définition des horosphères, qui permet de les

relier aux sous-espaces fortement stables et fortement instables du flot
géodésique: Soit £ e dX. Pour x e X, notons rx: [0, + oo[->X le rayon
géodésique issu de x et d'extrémité Alors:

(2.3.1) HXtl {y e X | lim | rx(t) - ry(t) | 0}
t ~> + oo

Notons que les deux définitions coïncident, grâce à 2.2.0.

2.4. Produit de Gromov de deux éléments de 8X

Soit x, y} z trois points de X. Rappelons que le produit de Gromov de y, z
relativement à x, est défini par (voir figure 0) :

(y\z)x \(\x - y\ + \x - z\-\ y - z |

Figure 0
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