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80 M. BOURDON

agit de maniére cocompacte sur 1’enveloppe convexe H(A) de son ensemble
limite. Il est quasi-convexe si et seulement si il est convexe cocompact.
En effet, Q(A) et H(A) sont a distance de Hausdorff finie. Une maniére de
le montrer est la suivante (voir [C]): Le convexe H(A) est la réunion
des n-simplexes idéaux de Hy, dont les arétes sont des géodésiques de O(A)
(c’est un théoréme de Carathéodory appliqué au modéle de Klein de Hy
(voir [Ber], théoréme 11.1.8.6)). Or tout point d’un n-simplexe de Hp
est a distance majorée par une constante universelle C(n), de ses arétes.

Signalons aussi que I' est convexe cocompact si et seulement si il est
geométriquement fini sans parabolique (une conséquence de la décomposition
de Margulis en parties fines et épaisses).

Enfin, tout groupe fuchsien de type fini est géométriquement fini
(voir [Bea], chapitre 10). Aussi, un groupe fuchsien est quasi-convexe si et
seulement si il est de type fini sans parabolique.

2. STRUCTURE CONFORME SUR LE BORD D’UN CAT (—1)-ESPACE

ENSEMBLE LIMITE ET FLOT GEODESIQUE ASSOCIES
A UNE ACTION QUASI-CONVEXE

2.0. INTRODUCTION

Soit X un CAT (- 1)-espace. Nous montrons que son bord admet une
structure conforme canonique, compatible avec sa structure quasi-conforme.
Plus précisément, nous construisons sur d.X une famille de métriques visuelles
{d,,x € X}, deux a deux conformes, qui ont la propriété que les isométries
de X soient des applications conformes de (0.X, d,).

Rappelons qu’une application f: (A4, d4) = (B, dg) est conforme, si quel
que soit ay € A, la limite lorsque a tend vers a, de

dg(f(a), f(ao))
ds(a, aop)

existe et est finie non nulle. On ’appellera le facteur conforme de f en aq.
Rappelons également que deux métriques d,, d, sur A, sont conformes, si
I’identité (A4, d;) — (A, d,) est conforme.

Soit maintenant une action isométrique quasi-convexe d’un groupe
hyperbolique I' sur un CAT(—1)-espace X. A cette action sont associés:

— L’ensemble limite de I" dans 8.X, muni de la structure conforme induite,
sur lequel agit I" par transformations conformes.
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— Un flot géodésique qui généralise le flot géodésique habituel du fibré
unitaire tangent a une variété riemannienne compacte (voir [G] et 2.8).

Nous montrons que la structure conforme de I’ensemble limite détermine
le flot géodésique et inversement. Précisons ceci:

Supposons que I' agisse par isométries de maniére quasi convexe, sur
deux CAT (- 1)-espaces X; et X,. Notons respectivement A;, Az, %, €,
les ensembles limites et les espaces du flot géodésique associés aux deux actions
de T. D’aprés 1.8.5, A, et A, se correspondent par un homéomorphisme
canonique. I'-équivariant et quasi conforme:

Q: Al = A2 ;
D’autre part, I’ensemble:
A; X A; — {diagonale}/T, i =1,2

s’identifie & #;, ’ensemble des orbites (orientées) du flot de ;. Donc
I’homéomorphisme I'-équivariant:

QxQ: A; X A, — {diagonale} = A, X A, — {diagonale}

donne par passage au quotient une bijection:
F: ﬁ] —> fz .

M. Gromov montre l’existence d’une équivalence d’orbite de &, sur %,
qui induit application F entre #; et Z,. (Une équivalence d’orbite est un
homéomorphisme envoyant orbites sur orbites sans préserver en général le
paramétrage). Nous montrons:

2.0.1. THEOREME. Les assertions suivantes sont équivalentes:
(1) L’homéomorphisme quasi-conforme € est conforme.

(i) L’équivalence d’orbite précédente est réalisée par une conjugaison des
flots géodésiques (une équivalence d’orbite préservant le paramétrage).

Sans doute ce théoreme est-il déja connu des spécialistes (U. Hamenstadt
fait des choses assez semblables dans [H]). Il ne semble pourtant pas avoir été
écrit sous cette forme, ni dans cette généralité.

Aux paragraphes 2.1, 2.2, 2.3, nous rappelons brievement les définitions
des fonctions de Busemann, de distances horosphériques et d’horosphéres. Les
paragraphes 2.4, 2.5, 2.6 sont consacrés a la construction de la structure
conforme de 0.X. Les paragraphes 2.7, 2.8, 2.9, 2.10 traitent de ’ensemble
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limite et du flot géodésique associés a une action isométrique, quasi-convexe,
d’un groupe hyperbolique sur X. On développe briévement la notion de mesure
conforme sur I’ensemble limite, et on rappelle une construction de la mesure
d’entropie maximale du flot géodésique. Au paragraphe 2.11, nous montrons
le théoreme 2.0.1.

2.1. FONCTIONS DE BUSEMANN
Soit r: [0, + o[ =& X un rayon géodésique, et x € X. D’aprés I’inégalité
triangulaire, la fonction
te|x —r@)| -t

est décroissante et minorée par — |x — r(0)|. Appelons b,(x) sa limite
en + oo. L’application b, de X dans R ainsi définie, est la fonction de
Busemann associée au rayon r.

2.2. DISTANCES HOROSPHERIQUES

Soit x,y e X, £ € 08X, et r: [0, + o[ > X un rayon géodésique d’extré-
mité €. La quantité
im |x—r()|[~|y-r@]|
t—= + o
est égale a b,(x) — b,(»). Elle est indépendante du rayon r d’extrémité &.
En effet si r’ est un autre rayon d’extrémité &, par comparaison avec Hi,
on a:

(2.2.0) lim d(r'(s),r) =0.

t— +

La limite Be(x,y) = lim |x — r(¢)| — |y — r(¢)| est appelée distance

t— +

horosphérique de x a y relativement a . Elle vérifie:

(2.2.1) B (x,y) = — B:(y, %)
(2.2.2) B(x,z) = Be(x,y) + Be(y, 2)
2.2.3) " Bi(x,y) < |x -]

avec égalité si et seulement si y € [xE).

2.3. HOROSPHERES

Considérons les ensembles de niveau de la fonction:

 feizP Bi(x,2) .
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