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agit de manière cocompacte sur l'enveloppe convexe H(A) de son ensemble
limite. Il est quasi-convexe si et seulement si il est convexe cocompact.
En effet, Q(A) et H(A) sont à distance de Hausdorff finie. Une manière de
le montrer est la suivante (voir [C]): Le convexe H(A) est la réunion
des ri-simplexes idéaux de H£, dont les arêtes sont des géodésiques de Q(A)
(c'est un théorème de Carathéodory appliqué au modèle de Klein de HJ
(voir [Ber], théorème 11.1.8.6)). Or tout point d'un «-simplexe de HJ
est à distance majorée par une constante universelle C(n), de ses arêtes.

Signalons aussi que T est convexe cocompact si et seulement si il est

géométriquement fini sans parabolique (une conséquence de la décomposition
de Margulis en parties fines et épaisses).

Enfin, tout groupe fuchsien de type fini est géométriquement fini
(voir [Bea], chapitre 10). Aussi, un groupe fuchsien est quasi-convexe si et
seulement si il est de type fini sans parabolique.

2. Structure conforme sur le bord d'un CAT (-1)-espace
Ensemble limite et flot géodésique associés

À UNE ACTION QUASI-CONVEXE

2.0. Introduction

Soit X un CAT (-1)-espace. Nous montrons que son bord admet une
structure conforme canonique, compatible avec sa structure quasi-conforme.
Plus précisément, nous construisons sur 6X une famille de métriques visuelles

{dx,x e X}, deux à deux conformes, qui ont la propriété que les isométries
de X soient des applications conformes de (6X, dx).

Rappelons qu'une application /: (A, dA) -> (Bt dB) est conforme, si quel

que soit aQ e A, la limite lorsque a tend vers aQ de

rf*(/(g)>/(go))
dA(a, a0)

existe et est finie non nulle. On l'appellera le facteur conforme de / en ß0.

Rappelons également que deux métriques d\,d2 sur A, sont conformes, si

l'identité (A, dx) -> (A, d2) est conforme.
Soit maintenant une action isométrique quasi-convexe d'un groupe

hyperbolique T sur un CAT(-1)-espace X. A cette action sont associés:

— L'ensemble limite de T dans dX, muni de la structure conforme induite,

sur lequel agit T par transformations conformes.
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— Un flot géodésique qui généralise le flot géodésique habituel du fibré

unitaire tangent à une variété riemannienne compacte (voir [G] et 2.8).

Nous montrons que la structure conforme de l'ensemble limite détermine

le flot géodésique et inversement. Précisons ceci:

Supposons que T agisse par isométries de manière quasi convexe, sur

deux CAT(-1)-espaces X} et X2. Notons respectivement Ai, A2, îi, ^2,
les ensembles limites et les espaces du flot géodésique associés aux deux actions

de T. D'après 1.8.5, Ai et A2 se correspondent par un homéomorphisme

canonique. T-équivariant et quasi conforme:

Q: Ai A2.

D'autre part, l'ensemble:

A, x Ai - {diagonale}/T, i 1,2

s'identifie à l'ensemble des orbites (orientées) du flot de Donc

l'homéomorphisme T-équivariant:

Q x Q: Ai x Ai - {diagonale} -^A2xA2- {diagonale}

donne par passage au quotient une bijection:

F: é/\ •

M. Gromov montre l'existence d'une équivalence d'orbite de ^1 sur ^2
qui induit l'application F entre et ^2. (Une équivalence d'orbite est un
homéomorphisme envoyant orbites sur orbites sans préserver en général le

paramétrage). Nous montrons:

2.0.1. Théorème. Les assertions suivantes sont équivalentes:

(i) L'homéomorphisme quasi-conforme Q est conforme.

(ii) L'équivalence d'orbite précédente est réalisée par une conjugaison des

flots géodésiques (une équivalence d'orbite préservant le paramétrage).

Sans doute ce théorème est-il déjà connu des spécialistes (U. Hamenstädt
fait des choses assez semblables dans [H]). Il ne semble pourtant pas avoir été

écrit sous cette forme, ni dans cette généralité.
Aux paragraphes 2.1, 2.2, 2.3, nous rappelons brièvement les définitions

des fonctions de Busemann, de distances horosphériques et d'horosphères. Les

paragraphes 2.4, 2.5, 2.6 sont consacrés à la construction de la structure
conforme de dX. Les paragraphes 2.7, 2.8, 2.9, 2.10 traitent de l'ensemble
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limite et du flot géodésique associés à une action isométrique, quasi-convexe,
d'un groupe hyperbolique sur X. On développe brièvement la notion de mesure
conforme sur l'ensemble limite, et on rappelle une construction de la mesure

d'entropie maximale du flot géodésique. Au paragraphe 2.11, nous montrons
le théorème 2.0.1.

2.1. Fonctions de Busemann

Soit r: [0, + oo[ X un rayon géodésique, et x e X. D'après l'inégalité
triangulaire, la fonction

f \ x - r(t) | - t

est décroissante et minorée par -|*-r(0)|. Appelons br(x) sa limite
en +oo. L'application br de X dans R ainsi définie, est la fonction de

Busemann associée au rayon r.

2.2. Distances horosphériques

Soit x,y e X, ^ e dX, et r: [0, + oo[ X un rayon géodésique d'extrémité

La quantité

lim \x - r(t) | - |y - r{t) \

t + oo

est égale à br(x) - br(y). Elle est indépendante du rayon r d'extrémité £,.

En effet si r' est un autre rayon d'extrémité par comparaison avec Hg,
on a:

(2.2.0) lim d{r'(t)9r) 0
t -> + oo

La limite B^(x,y) lim \x - r{t) | - |y - r(t) | est appelée distance
t + oo

horosphérique de x à y relativement à Elle vérifie:

(2.2.1) BK(x,y)= - BK{y,x)

(2.2.2) Bç(x, z) B^(x,y)+ (y, z)

(2.2.3)
'

B^(x,y)<\x - y

avec égalité si et seulement si y e [xÇ).

2.3. Horosphères

Considérons les ensembles de niveau de la fonction:

B-C(x, z)
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D'après 2.2.2, ils sont indépendants de x. Plus précisément, l'ensemble de

niveau t de fx est égal à l'ensemble de niveau t - de fy. Ce sont les

horosphères en Ç.

La distance horosphérique s'exprime maintenant de la manière
suivante: Soient Hx^ et Hy ^ les horosphères en £, passant par x et y. On

a d'après 2.2.3:

IB^y) | d(x,Hy,0 d{Hx^,Hy>0

Signalons aussi une autre définition des horosphères, qui permet de les

relier aux sous-espaces fortement stables et fortement instables du flot
géodésique: Soit £ e dX. Pour x e X, notons rx: [0, + oo[->X le rayon
géodésique issu de x et d'extrémité Alors:

(2.3.1) HXtl {y e X | lim | rx(t) - ry(t) | 0}
t ~> + oo

Notons que les deux définitions coïncident, grâce à 2.2.0.

2.4. Produit de Gromov de deux éléments de 8X

Soit x, y} z trois points de X. Rappelons que le produit de Gromov de y, z
relativement à x, est défini par (voir figure 0) :

(y\z)x \(\x - y\ + \x - z\-\ y - z |

Figure 0
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Soit maintenant Ç' deux points distincts de dX, x un point de X, et

p appartenant à (££')• Suivant V. Kaimanovich [K], considérons l'expression:

\{B%{x,p)+ Bv(x,p))
Elle est indépendante du point p choisi sur (££')• On l'appellera produit de

Gromov de et relativement à x, et on la notera (£, | £')*. (Voir figure 1.)

Notons que

(2.4.1) OU S')* -(VIS)*
(2.4.2) a 14'), ik I V)x - -2+ Bv(x,y))

Le lecteur vérifiera sans peine la proposition suivante:

2.4.3. Proposition. Soit y e [xl) et y' e [x£'). Le produit
de Gromov (y\y')x converge vers (£ | £')*, lorsque y et y' tendent

respectivement vers E, et

2.5. Une famille de métriques visuelles sur dX

Soit x une origine dans X. Pour dX, définissons:

dxa,$') e-Wh si

dx(%, V) 0 sinon
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2.5.1. Théorème. dx est une métrique sur dX.

2.5.2. Remarque. dx est une métrique visuelle de paramètres (x,e)
(voir 1.5.1). En effet, l'expression

l(ÇU')*- d(x,(^'))\

est majorée par une constante universelle (voir [G-H], chapitre 2, lemme 17).

Afin de montrer le théorème, nous introduisons un angle de comparaison,

ou plutôt son sinus: Soit y, y' deux éléments de X - {x}. Soit (xyy') un

triangle de comparaison de (xyy') dans Hr. Posons:

yxy'
(2.5.3) ax(y,y') sin ——

On peut également exprimer ax(y9y') sans recourir à un triangle de

comparaison. En effet, d'après les formules de trigonométrie dans Hr,
on a:

(ch \y - y' | - ch(| x - y\ - \x - y' |)\ 1/2
a x(y,y')

2sh I x - y I sh | jc - y' \

Le théorème découlera des deux lemmes suivants:

2.5.4. Lemme. Soit S(x,r) la sphère de X, de centre x et de

rayon r. Sur S(x, r), r > 0, ax est une métrique.

2.5.5. Preuve de 2.5.4. Seule l'inégalité triangulaire n'est pas triviale.
Soient donc y, z, t appartenant à S(x, r). D'après la relation 2.5.3, les valeurs
de a appartiennent à [0, 1]. Aussi, pour montrer l'inégalité triangulaire:

Ml, t) ^ ax(y, z) + ax(z, t)

supposons:

0) <*>x(y,z) + ax(z, t) < 1

Soit x,y,z,t e Hr, tels que:

a) (xyz) et (xzt) soient des triangles de comparaison de (xyz) et de (xzt).
b) (xz) sépare y et t (voir figure 2).
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t

y X Z Z X t
(2) o.x(y, z) sin ——, a sin ——.

2 2

L'hypothèse (1) implique:

yxz, + ZXt < 71

de plus:

|x - y \ | x - z | \x - t |

et (xz) sépare y et t Donc le segment [yt] coupe [xz] en un unique

point ü. Soit u e [xz], le point correspondant à ü. L'inégalité triangulaire
et l'inégalité CAT(-l) donnent alors:

\y - t\^\y - u\ + \u - t\
< | y - ü | + | ü - 11
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D'où

fch\y - t\- ch(\x - y \ - \ x - t \))l/2

1/2

(ch\y - t\ - ch(\x - y \ -\ x - t\)\
a* y,t

y 2sh | x - y | sh(| x - t | /
lch\y - t\ - chQx - y \ - \ x - t [)\

\ 2sh \x - y | sh(| x - t | /

c'est-à-dire encore:

yxt
(3) a (y, t) < sin-y- •

Or yxt y xz + yxt, et sin (a + b) ^ sin a + sinZ?, pour a, b appartenant
à [0,f] Donc (2) et (3) donnent:

ax(y, t) ^ ax(y, z) + ax(z, t)

2.5.6. Lemme. Soient y e [x£), y' e [x£'), alors:

lim ax(y,y') dx(Z»Z>') -

y^l

2.5.7. Preuve de 2.5.6. On a:

a
/ ch | y — y* 1 ch(\x-y\ - \ x-y'\)V/2

x
\^2sh | a - y | sh | x - y' | 2sh \ x - y \ sh \ x - y' \J

Un calcul montre que:

ch(\x-y\ — \x-y'\) x

—— — 2 (coth \x-y\coth I x - y I - l)
2sh|x-.y|sh|x-.y |

Cette expression tend vers 0 lorsque y -> y' Par ailleurs:

ch I yZyI

e\y-y'\-e-2(^b')x
5

2sh|x-.y|sh|x — j>'|

or d'après la proposition 2.4.3, on a:

lim (y\y')x tt\ï')x.

D'où le lemme.
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2.5.8. Preuve du théorème 2.5.1. Seule l'inégalité triangulaire n'est pas
triviale. Elle résulte des lemmes 2.5.4 et 2.5.6.

2.5.9. Exemples.

a) Prenons X HJ. Soit x le centre du modèle en boule. Alors:

txt'
dx(£>, £') sin -

2

est la moitié de la longueur du segment euclidien reliant £ à (voir figure 3).

Figure 3

Ce n'est pas la métrique naturelle sur dX, qui est la métrique angulaire.
Néanmoins elle lui est conforme, de facteur conforme constant égal à \.
b) Si X est un arbre réel:

où (i I Ç')* est la longueur du trajet que font ensemble les deux rayons
géodésiques issus de x et allant vers £ et (voir figure 4).
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Figure 4

2.6. Structure conforme sur dX

Nous montrons maintenant que la famille de métriques {dX9x e X},
définit une structure conforme sur dX. On a:

2.6.1. Proposition. Soit x une origine dans X et y, z deux

éléments de X. La fonction sur (dX, dx), définie par:

z)

est lipschitzienne.

2.6.2. Preuve. D'après les relations 2.2.1 et 2.2.2, on a:

Bfy, z) - B^x, y) + B^(x,z)

Aussi, il suffit de montrer que la fonction:

y)

est lipschitzienne sur (9X, dx). D'après la définition des métriques dx et

'd'après la relation 2.4.2, on a:

ou encore

(1) B^x,y)2Iogd,(Ç,J;') - 21ogdx«,É') -
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Supposons que dX ne soit pas réduit à un point. Soit alors F un petit
voisinage compact de Ç, et un élément fixé en dehors de F. La fonction:

^2 log

est lipschitzienne sur (V,dx). Les métriques dx et dy étant des métriques
visuelles de paramètres respectifs (x, é) et (y, e), elles sont Lipschitz-
équivalentes (voir 1.5.3.b). Donc la fonction

^21og^(^')
est également lipschitzienne sur (F, dx). Dès lors, par la relation (1), la
fonction:

B^(x,y)

est lipschitzienne sur (F, dx). Maintenant la compacité de (9X,dx) montre
qu'elle est lipschitzienne sur dX.

2.6.3. Corollaire.
a) Quels que soient les éléments x et y de X, les métriques dx et dy

sont conformes.

b) Soit g une isométrie de X. Alors g est une application conforme
de (dX, dx), dont le facteur conforme en Z, est:

| g'(£)\x~
2.6.4. Preuve:

a) D'après la relation 2.4.2 et la définition des métriques dx, on a:

i (Bt(x,y) + Bi'{x,y))

Donc la proposition 2.6.1 donne:

WM -, gB^x.y)

ce qui montre que dx et dy sont conformes.

b) Puisque g est une isométrie de X, on a:

(SÉl *£')*= (ÉlÉVi*.
Donc:

et la fin de la preuve est identique au (a).
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2.6.5. Exemples.

a) Prenons X Hj et x le centre du modèle en boule. Le groupe Isom (H£)

agit par transformations conformes sur la sphère S" munie de la métrique

euclidienne. Notons |jg'(^)|| le facteur conforme en £, d'un élément g

de Isoiu(Hr). D'après l'exemple 2.5.9(a) on a:

II*'«) Il k'(yl, e^'rll) •

b) Prenons X H£ et normalisons la métrique afin que sa courbure soit

comprise entre —4 et —1. Soit xle centre du modèle en boule.

Le groupe Isom(H£) laisse invariant le champ d'hyperplans {P^eS2"-1},
défini par:

Pk {ueP^S2"-1; ;,w) 0}

où h est la forme hermitienne de C":
n

h(k, u) Y, S/"/ •

i= 1

Il agit par transformations conformes sur {P^, E, g S2n~ 4 muni de la

métrique euclidienne. Notons |jg'(l)ll le facteur conforme sur P^ d'un
élément g de Isom(H£). Nous allons voir qu'à nouveau:

\\g'&) 11=

Pour ce faire, ramenons-nous à l'exemple a) par un argument de

D. Sullivan ([Su], p. 176). Observons tout d'abord que || g'(£) || ne dépend que
de g~lx. En effet, si h e Isom (H £) vérifie h~lx g~lx, alors la composée

g o h ~1 fixe x le centre du modèle en boule, donc g o h~l appartient à

U{n) et:

Wg'tt) 11 11 A'(S) Il

Choisissons donc judicieusement h. Notons y l'intersection de l'horo-
sphère //^, basée en contenant g~lx, avec la géodésique (xÇ). Le
stabilisateur de H^ dans Isom (Hnc) agit transitivement sur Hde plus le facteur
conforme de ses éléments en P^ est 1. Soit p un élément de Stab(Zf^),
vérifiant

p{g~lx)y

Soit aussi une copie de HJ contenant la géodésique (xÇ). L'espace tangent
à son bord en £, est contenu dans Pt. Soit t un élément de Isom (H£) qui fixe
cette copie et envoie y sur x.
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D'après l'exemple (a), on a:

I f (£) I eB^{x,y) _ eB%{x,g~lx)
<

Par ailleurs, la composée h t o p vérifie h~lx g~lx, d'où:

1 g'&) I 11'(%) I Hp'&) « 11'(£) Il

2.7. Mesures conformes sur l'ensemble limite d'un groupe quasi-
convexe

Soit T un groupe quasi-convexe d'isométries de X (voir 1.8), non
élémentaire. Son ensemble limite A hérite de la structure conforme de dX.
Notons p(x,y,^) le facteur conforme en Çe A, de l'application identité
de (A, dx) sur (A, dy). D'après le corollaire 2.6.3 (ou plutôt sa preuve),
on a:

(2.7.1) p(x, y, Ç)

D'autre part, d'après le corollaire 2.6.3, F agit par transformations conformes

sur (A, dx). Le facteur conforme de g e T en est:

(2.7.2) \g'(&)\**= p{x,g~lx,t,)

Comme dans le cas des groupes convexes cocompacts d'isométries
de HJ, on définit la notion de mesure a-conforme sur A (voir [Su], [N],
et [C] pour une notion analogue sur les espaces hyperboliques généraux):

La collection de mesures {\ix,xeX} est une mesure a-conforme,
si pour tout v 6 X, \xx est finie non nulle, de support inclus dans A, et si

pour tout x, y e X et g e F:

QU) V?[p{x,y,.)]a|ix
Us-'* |g'l>* •

La théorie des mesures conformes est essentiellement la même que pour les

groupes convexes cocompacts de Hj. La seule différence est qu'une boule
de A n'est pas en général une ombre. Néanmoins elle en est presque une

d'après 1.6.2. Soit t la dimension de Hausdorff de (A,dx). Soit vx la

T-mesure de Hausdorff de (A, dx). On a:

2.7.4. Théorème. La collection {vX)xeX} est une x-mesure

conforme. De plus, toute mesure conforme est une t-mesure conforme,

égale à une constante près à {vx,x e X}.

De plus:
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2.7.5. Théorème.

a) Ladimension t est égale au taux de croissance de T dans X.

C'est-à-dire:

t lim — log # {geT | | x - g^«} •

n -> + oo ïl

b) La vx-mesure d'une boule de (A, dx), est proportionnelle à son rayon
à la puissance t. Autrement dit: il existe une constante Cx ^ 1, telle que

pour toute boule B(^,r) centrée sur A, on ait:

C;lC< vx(B(Z,,r))<
Rappelons les principales étapes de la démonstration de ces résultats:

Soit a0 lim - log #{g eT|| a - gx\x<«}•S. J. Patterson a exhibé
n -* + oo n

une mesure a0-conforme (voir par exemple [Su], p. 175). D'autre part
d'après D. Sullivan, si {\iX9x e X} est une a-mesure conforme, alors la

[ix mesure d'une boule de A est proportionnelle à son rayon à la puissance a

(c'est le lemme de l'ombre [Su], p. 180). Dès lors par un principe général, a
(et en particulier a0) est égal à t, les mesures [ix et v* sont absolument
continues l'une par rapport à l'autre et leurs densités sont bornées. Ainsi on
obtient 2.7.5. Maintenant puisque vx est finie, {vx,x e X} est une T-mesure
conforme (voir 2.6.3). Deux T-mesures conformes absolument continues l'une

par rapport à l'autre sont égales (voir [Su], p. 181). Le théorème 2.7.4

en découle.

2.8. Flot géodésique associé à une action quasi-convexe

Soit X un CAT(-l)-espace, sur lequel agit T par isométrie de manière
quasi-convexe. Notons A l'ensemble limite de T dans dX Définissons GA
l'ensemble des géodésiques (paramétrées) de X, dont les extrémités
appartiennent à A:

G A {y: R - X isométries avec y(-oo) eA, y(+oo) eA}
Et équipons-le de la métrique suivante:

i T",Iy-yIga J \y(t) -
La topologie associée est celle de la convergence uniforme sur les compacts.
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En effet, on a:

2.8.1. Proposition. Quel que soit T ^ 0, alors:

e~T sup |y(0 - Y'(0|x< |y - Y'\ga
t e[-T,T]

«S sup |y(0 - Y'(0 U + 2
t e [ - T,T)

2.8.2. Preuve. L'inégalité de droite est un simple calcul. L'inégalité
de gauche provient de l'inégalité de Jensen appliquée à la fonction convexe

(voir 1.3):

t^>|y(0- Y'(0 \X

Clairement, le groupe T agit par isométries sur (GA, | |GA) de manière

proprement discontinue. L'espace métrique quotient:

f GA/Y

est l'espace du flot géodésique, associé à la paire (X, T). Notons que % est

compact. En effet, T est quasi-convexe, donc le quotient de l'enveloppe
de Gromov de A par T est compact (voir 1.8.6).

Le flot géodésique de GA est le groupe à un paramètre d'homéo-

morphisme {Or, Te R}, provenant de l'action naturelle de R sur GA. Il est

défini par:

(2.8.3) Or(y) y r, avec y T(t) y (t + T)

Remarquons que pour tout T e R, g e T, et y e GA:

(2.8.4) Or(gY) Y) •

Le flot géodésique de ^ est le groupe à un paramètre d'homéomorphismes,
induit sur f7 par la relation 2.8.4. On le notera encore {®r, Te R}.

Par analogie aux flots d'Anosov, on définit les sous-ensembles fortement
stables et fortement instables de (GA, Or). En y e GA, ils sont
respectivement définis par:

Wss (y)

Wuu(Y)

T1 6 GA I I Oy (il) - Or(Y) GA ^ 0
T -> + 00

T| 6 GA I | 0_y(Tl) - 0_r(Y) GA

Ils forment un feuilletage Or-invariant de GA. D'après 2.3.1, ils sont liés

aux horosphères de la manière suivante:
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(2 8 5)
WSS(y) {T1 6 GA 6 //v«».r<+»>>'n(+ °°) Y(+ «>)}

W"«(y) {rj e GAh(O) eHy(0),rl°°)oo)}

Observons qu'ils sont canoniquement homéomorphes à A privé d'un point.
On définit les sous-ensembles fortement stables et instables de (If, Or) par:

2.8.6. Définition. Soit n la projection de GA sur alors:

Wss (jz (y)) n(Wss(y))

Wuu(n(yj) n(Wuu(yj)

Le sous-ensemble faiblement stable (resp. instable) de GA en y, est la

réunion des sous-ensembles fortement stables (resp. instables), le long de

l'orbite de y sous Or. En d'autres termes:

Ws(y) U JE55(Of(y)) {tj g GA | r|(+ oo) y(+ oo)}
Te R

Wu(y) U Wuu(Of(y)) {rj g GA | r| — oo) y — oo)}
Te R

De même, sont définis les sous-ensembles faiblement stables et instables de 9\
D'après la définition 2.8.6, ils sont correspondance avec ceux de GA, via la

projection de GA sur

2.9. Le paramétrage de Hopf de (^, Or)

Choisissons une origine x dans X. Soit A la diagonale de A x A. On définit
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l'élément (£_,£+,?) de (A x A - À) x R, associons l'unique élément y
de GA vérifiant (voir figure 5):

(2.9.1) y (-oo) ^_,y(+<*) t>+,Bu(x, y(0)) /

Le lecteur vérifiera aisément que l'application ainsi définie est un

homéomorphisme. Notons que dans ces coordonnées s'écrit:

(2.9.2) Or(Ç_,Ç+,0 F)

Notons également que les sous-ensembles fortement stables du flot ont pour
coordonnées (voir 2.8.5):

(2.9.3) («.,Ç + J0, Ç.eA-{Ç+}},
Par ailleurs, en coordonnées l'action de r s'écrit:

(2.9.4) g(Ç_,Ç+,0 (gZ,-,gZ>+,t-Bs+(x,g-ix))

Aussi, on obtient un homéomorphisme:

(2.9.5) (A X A - A) X R/_ -* f
en définissant la relation d'équivalence suivante sur (A x A - A) x R:

si et seulement si, il existe g e T tel que:

gU, V+ gt=+,t' t -

2.10. Mesure d'entropie maximale

On rappelle ici une construction de la mesure d'entropie maximale du flot
géodésique, due à D. Sullivan ([Su], [Su2]), dans le cas des groupes convexes

cocompacts d'isométries de H£, puis généralisée par V. Kaimanovich [K].
Soit x un élément de X, et soit respectivement t et vx la dimension et

la mesure de Hausdorff de (A, dx) (voir 2.7). La mesure:

Vx X V*
(2.10.1) \i K(^')P
est une mesure de Radon sur A x A - A. Elle est indépendante de x et

T-invariante. En effet {vx,v e X} est une mesure x-conforme (voir 2.7.4),
de plus d'après 2.4.2 et 2.7.1:

dy& %') dx^, V) {p{x,y, ^)p(x,y, ^')]1/2 •
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Le paramétrage de Hopf permet d'identifier GA à (A x A - A) x R.

Soit alors m la mesure sur GA définie par:

m p x dt

C'est une mesure de Radon. T-invariante et Or-invariante. La mesure m,
restriction de m au compact S, (considéré comme un domaine fondamental
de T dans GA), est finie et invariante. On a:

2.10.2. Théorème O T est ergodique sur f, m

La preuve de ce théorème est mot pour mot la preuve classique de

Hopf [Ho]. Le point essentiel est que p s'écrive comme un produit de deux

mesures sur A.
Clairement, l'ergodicité de <&T sur {'S, m) est équivalente à celle de T

sur (A x A - A, p). Puisque p et v* x v* sont absolument continues,
l'ergodicité de T sur (A x A - A, p) entraîne l'ergodicité de T sur (A, v*).
D'où,

2.10.3. Corollaire. L'action de T est ergodique sur (A x A - A, p)
et sur (A, vx).

Notons respectivement h et hm, l'entropie topologique de Or et l'entropie
mesurable de (0T,m). Elles se calculent comme dans le cas convexe
cocompact (voir [Su2], p. 275-276, [K]). On obtient:

2.10.4. Théorème, h — hm t. Ainsi m maximise l'entropie
mesurable.

2.11. Preuve du théorème 2.0.1.

Nous renvoyons à l'introduction pour les notations. Nous montrons
d'abord deux lemmes:

Soient Xi,*2 des origines respectivement de Xl et X2. Notons dx et d2
les métriques dXl et dXl sur Ai et A2.

2.11.1. Lemme. Supposons que l'application Q : (Ax, dx) (A2, d2)
soit conforme. Alors3 son facteur conforme co est continu sur Ax.

2.11.2. Preuve de 2.11.1. Puisque Q est conforme, les ensembles
limites Aj et A2 ont même dimension de Hausdorff t. De plus, en notant Vi
et v2 les i-mesures de Hausdorff de (Ax, dx) et (A2, d2), on a:

0) Q*v2 coTVi.
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Soit [ii et jx2 les mesures sur Ai x Ai - À et A2 x A2 - A, définies

par la relation 2.10.1. D'après l'égalité (1), la mesure:

(Q x Q)*p2

est absolument continue par rapport à pi. De plus, \x2 est T-invariante
et Q est T-équivariant, donc (QxQ)*p2 est T-invariante. Alors, puisque
l'action de T est ergodique sur (Ai x A2 - A, pi) (corollaire 2.10.3), les

mesures (Q x Q)*p2 et pi sont égales à une constante près. Donc, à une
constante près leurs densités par rapport à Vi x Vj sont presque sûrement

égales. D'où Vi x Vi-presque sûrement:

cût(^)c0t(£,') Cste

[tfi(^')PT
~

[rf2(Q(É),Q(Ç'))]2T'
soit encore

[rf2(Q(^), Q(^))]2 (Cste)1/xœ(^œ(^) [d^, Ç')P •

L'application Q : (Ai, d\) (A2, d2) étant continue, co l'est également.
Notons qu'en faisant tendre vers £, on trouve Cste =1.

Soit maintenant st l'involution de GA/ définie par:

Si (y) y' avec y '{t) y( - t)

Par passage au quotient on obtient une involution de c&i que l'on notera

encore S/.

2.11.3. Lemme. Supposons que Vhoméomorphisme G: ^
conjugue les flots géodésiques. Quitte à remplacer G par G' <&Tq o G

pour un certain réel T0, on peut supposer:

G o s\ s2 o G

2.11.4. Preuve de 2.11.3. Soit T la fonction sur ^i dans R, définie
de la manière suivante: Etant donné y e 7(y) est l'unique réel vérifiant:

(1) ®t(j)(G ° Si (y)) s2 ° <ê>7-(Y)(G(y))

La fonction T est continue et invariante par le flot de ^i. Aussi elle est

constante (par l'ergodicité du flot sur {^\,m0; (théorème 2.10.2)).
Notons T0 la valeur constante de 7, et G' l'application Oro o G. D'après (1),

on a:

G' o s-i s2 o G'
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2.11.5. Preuve de 2.0.1. Montrons (i) => (ii).

Soit g e T. Notons respectivement |g'|i et |g'|2, le facteur conforme

de g sur (Ai, dx) et (A2, d2). En écrivant:

Q o g g o Q

et en calculant le facteur conforme des deux membres, on obtient:

(1) (œ 0 g) \gr]i (\g' |2 o Q)co

Construisons maintenant notre conjugaison: Paramétrons GAi et GA2
comme au paragraphe 2.9, en choisissant pour origines les points Xi et x2.
Définissons une application G de GAi dans GA2, par:

G(Ç_ Ç+ 0 (Û(^), Û« + t - log©(£ + »

D'après le lemme 2.11.1, co est continue, donc G est un homéomorphisme.
D'après la relation 2.9.2, il conjugue les flots de GAi et GA2. De plus,
quel que soit g e Y, il vérifie:

(2) G o g g o G

En effet, d'après 2.9.4 on a:

(GO£)(£_,Ç+,0
(G ° g(£_), ^ ° g(Ç + t~B%+(xl,g-lxl)-logco o g(Ç +

et

(go G)«_,ç+,/)
(go Q((.),jo Q(£+), t + - B

Or d'après le corollaire 2.6.3,

log |g'(Ç +

et

Bntt+)(x2,g-1x2)log(|g'|2 o Q(Ç +

Ainsi l'égalité (2) provient de (1) et de la T-équivariance de Q. Grâce
à (2), on obtient une conjugaison des flots de et Par construction,
elle induit l'application F entre et •

Montrons (ii) => (i).
Soit G:?,-»?2une conjugaison des flots, qui induit l'application F

entre et D'après le lemme 2.11.3, on peut supposer:
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(3) G o si s2 o G

Relevons la conjugaison G à GA{ et GA2 de la manière suivante: Soit
la projection de GAZ sur Pour yiR-^Ai appartenant à GAi, soit

y': R -> X2, un élément de GA2 vérifiant:

Y'(-oo) Q(y(-00», y'(+ 00 Q(y(+ 00»

et

7l2(Y') G(7ti(Y» •

Notons que y' existe puisque G induit F entre et 02. De plus, si tci (y)
n'appartient à aucune orbite périodique de ^i, y' est unique. On obtient
ainsi une application

G: GAi GA2

y^y'
définie sauf sur les relevés des orbites périodiques, qui conjugue les flots,
vérifie:

G o m n2 o G

ainsi que, d'après 3):

(4) G o si s2 o G

Paramétrons GA) et GA2 comme au paragraphe 2.9, en choisissant les

points Xi et x2 comme origines. Puisque G est une conjugaison continue entre
les compacts ^ et W2, elle est uniformément continue. Aussi elle envoie

sous-ensembles fortement stables sur sous-ensembles fortement stables.

D'après sa définition et la proposition 2.8.6, G a la même propriété. Aussi,

d'après 2.9.3, G s'écrit en coordonnées:

G(Ç_, Ç + 0 (Û(S-), Û(Ê+), t - logco(^+))

pour une certaine fonction co de Ai dans ]0, + oo[. Notons que ceci permet
de définir G sur GAX tout entier.

Comparons maintenant les métriques dx dX{ et d2 dXl sur Ai et A2:
Soit £, et deux points distincts de A1? et p appartenant à (£,£,')• Soit y
l'élément de GAi, vérifiant:

Y(-oo) Ç, y(+ 00) t,'etY(0
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Les points G(y)(0) et G(.st(y))(0) appartiennent à la géodésique

(Q(Ç)Q(Ç')) de X2.D'après(4) ils sont égaux. Notons-les En coor-

données on a:

y (Ç, ^',Bv(
et

s, (Y)

D'où:

G(y) (Q(0.ß( ^'),Bv(Xl,p)-logft)(4'))

et

G(si(y))(n(4'),Q(0,5ç(*i,p)-log(a(0)
donc

(5) Br!(V)(x2,q) Baa>)(x2,G(Y)(0)) - logco(Ç')

et

(6) Bai^(x2i q) Baß) (x2, G(si(y))(0)) -Bç(Xi ,p)-logcû(^)

Ainsi (5) et (6) donnent:

[^(Q(^),Q(^))]2 œ(^)co(^) [ddî,*,')]2

Puisque l'application Q de (Ahrfi) sur (A2,d2) est continue, co l'est

également. Alors, en faisant tendre If vers Q est conforme de facteur
conforme co.
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