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80 M. BOURDON

agit de maniére cocompacte sur 1’enveloppe convexe H(A) de son ensemble
limite. Il est quasi-convexe si et seulement si il est convexe cocompact.
En effet, Q(A) et H(A) sont a distance de Hausdorff finie. Une maniére de
le montrer est la suivante (voir [C]): Le convexe H(A) est la réunion
des n-simplexes idéaux de Hy, dont les arétes sont des géodésiques de O(A)
(c’est un théoréme de Carathéodory appliqué au modéle de Klein de Hy
(voir [Ber], théoréme 11.1.8.6)). Or tout point d’un n-simplexe de Hp
est a distance majorée par une constante universelle C(n), de ses arétes.

Signalons aussi que I' est convexe cocompact si et seulement si il est
geométriquement fini sans parabolique (une conséquence de la décomposition
de Margulis en parties fines et épaisses).

Enfin, tout groupe fuchsien de type fini est géométriquement fini
(voir [Bea], chapitre 10). Aussi, un groupe fuchsien est quasi-convexe si et
seulement si il est de type fini sans parabolique.

2. STRUCTURE CONFORME SUR LE BORD D’UN CAT (—1)-ESPACE

ENSEMBLE LIMITE ET FLOT GEODESIQUE ASSOCIES
A UNE ACTION QUASI-CONVEXE

2.0. INTRODUCTION

Soit X un CAT (- 1)-espace. Nous montrons que son bord admet une
structure conforme canonique, compatible avec sa structure quasi-conforme.
Plus précisément, nous construisons sur d.X une famille de métriques visuelles
{d,,x € X}, deux a deux conformes, qui ont la propriété que les isométries
de X soient des applications conformes de (0.X, d,).

Rappelons qu’une application f: (A4, d4) = (B, dg) est conforme, si quel
que soit ay € A, la limite lorsque a tend vers a, de

dg(f(a), f(ao))
ds(a, aop)

existe et est finie non nulle. On ’appellera le facteur conforme de f en aq.
Rappelons également que deux métriques d,, d, sur A, sont conformes, si
I’identité (A4, d;) — (A, d,) est conforme.

Soit maintenant une action isométrique quasi-convexe d’un groupe
hyperbolique I' sur un CAT(—1)-espace X. A cette action sont associés:

— L’ensemble limite de I" dans 8.X, muni de la structure conforme induite,
sur lequel agit I" par transformations conformes.
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— Un flot géodésique qui généralise le flot géodésique habituel du fibré
unitaire tangent a une variété riemannienne compacte (voir [G] et 2.8).

Nous montrons que la structure conforme de I’ensemble limite détermine
le flot géodésique et inversement. Précisons ceci:

Supposons que I' agisse par isométries de maniére quasi convexe, sur
deux CAT (- 1)-espaces X; et X,. Notons respectivement A;, Az, %, €,
les ensembles limites et les espaces du flot géodésique associés aux deux actions
de T. D’aprés 1.8.5, A, et A, se correspondent par un homéomorphisme
canonique. I'-équivariant et quasi conforme:

Q: Al = A2 ;
D’autre part, I’ensemble:
A; X A; — {diagonale}/T, i =1,2

s’identifie & #;, ’ensemble des orbites (orientées) du flot de ;. Donc
I’homéomorphisme I'-équivariant:

QxQ: A; X A, — {diagonale} = A, X A, — {diagonale}

donne par passage au quotient une bijection:
F: ﬁ] —> fz .

M. Gromov montre l’existence d’une équivalence d’orbite de &, sur %,
qui induit application F entre #; et Z,. (Une équivalence d’orbite est un
homéomorphisme envoyant orbites sur orbites sans préserver en général le
paramétrage). Nous montrons:

2.0.1. THEOREME. Les assertions suivantes sont équivalentes:
(1) L’homéomorphisme quasi-conforme € est conforme.

(i) L’équivalence d’orbite précédente est réalisée par une conjugaison des
flots géodésiques (une équivalence d’orbite préservant le paramétrage).

Sans doute ce théoreme est-il déja connu des spécialistes (U. Hamenstadt
fait des choses assez semblables dans [H]). Il ne semble pourtant pas avoir été
écrit sous cette forme, ni dans cette généralité.

Aux paragraphes 2.1, 2.2, 2.3, nous rappelons brievement les définitions
des fonctions de Busemann, de distances horosphériques et d’horosphéres. Les
paragraphes 2.4, 2.5, 2.6 sont consacrés a la construction de la structure
conforme de 0.X. Les paragraphes 2.7, 2.8, 2.9, 2.10 traitent de ’ensemble
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limite et du flot géodésique associés a une action isométrique, quasi-convexe,
d’un groupe hyperbolique sur X. On développe briévement la notion de mesure
conforme sur I’ensemble limite, et on rappelle une construction de la mesure
d’entropie maximale du flot géodésique. Au paragraphe 2.11, nous montrons
le théoreme 2.0.1.

2.1. FONCTIONS DE BUSEMANN
Soit r: [0, + o[ =& X un rayon géodésique, et x € X. D’aprés I’inégalité
triangulaire, la fonction
te|x —r@)| -t

est décroissante et minorée par — |x — r(0)|. Appelons b,(x) sa limite
en + oo. L’application b, de X dans R ainsi définie, est la fonction de
Busemann associée au rayon r.

2.2. DISTANCES HOROSPHERIQUES

Soit x,y e X, £ € 08X, et r: [0, + o[ > X un rayon géodésique d’extré-
mité €. La quantité
im |x—r()|[~|y-r@]|
t—= + o
est égale a b,(x) — b,(»). Elle est indépendante du rayon r d’extrémité &.
En effet si r’ est un autre rayon d’extrémité &, par comparaison avec Hi,
on a:

(2.2.0) lim d(r'(s),r) =0.

t— +

La limite Be(x,y) = lim |x — r(¢)| — |y — r(¢)| est appelée distance

t— +

horosphérique de x a y relativement a . Elle vérifie:

(2.2.1) B (x,y) = — B:(y, %)
(2.2.2) B(x,z) = Be(x,y) + Be(y, 2)
2.2.3) " Bi(x,y) < |x -]

avec égalité si et seulement si y € [xE).

2.3. HOROSPHERES

Considérons les ensembles de niveau de la fonction:

 feizP Bi(x,2) .
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D’aprés 2.2.2, ils sont indépendants de x. Plus précisément, I’ensemble de
niveau ¢ de f, est égal & I’ensemble de niveau ¢t — B¢ (x, y) de f,. Ce sont les
horosphéres en &.

La distance horosphérique s’exprime maintenant de la maniére sui-
vante: Soient H, : et H, : les horospheéres en &, passant par x et y. On
a d’apres 2.2.3:

IB?;(X,)’) ’ =d(x,H,)=dH,H, ).

Signalons aussi une autre définition des horospheéres, qui permet de les
relier aux sous-espaces fortement stables et fortement instables du flot
geodésique: Soit & € 0X. Pour x € X, notons r,:[0, + o[ > X le rayon
géodésique issu de x et d’extrémité £. Alors:

2.3.1) H.:={yeX| lim |r.(¢) — r,(t)| = 0}.

t— +

Notons que les deux définitions coincident, grace a 2.2.0.

2.4. PRODUIT DE GROMOV DE DEUX ELEMENTS DE 86X

Soit x, y, z trois points de X. Rappelons que le produit de Gromov de y, z
relativement a x, est défini par (voir figure 0):

UlDx=53x-y|+|x-z|-1]y -2z

FIGURE 0
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Soit maintenant £, £’ deux points distincts de 8.X, x un point de X, et
p appartenant a (£&’). Suivant V. Kaimanovich [K], considérons I’expression:

%(B{;(X,p) + Bi'(x’p)) .

Elle est indépendante du point p choisi sur (££’). On I’appellera produit de
Gromov de & et £’ relativement & x, et on la notera (¢ | £'),. (Voir figure 1.)

FIGURE 1
Notons que
(2.4.1) (&)= (E"]€)x
(2.4.2) (E1€), = (E]E)x — 5 (Be(x, ) + B/ (x,))) .

Le lecteur vérifiera sans peine la proposition suivante:

2.4.3. PROPOSITION. Soit ye[xt) et y' e€[xf’). Le produit
de Gromov (y|y’). converge vers (§£|&’)., lorsque y et y' tendent
respectivement vers & et &’.

2.5. UNE FAMILLE DE METRIQUES VISUELLES SUR 00X

Soit x une origine dans X. Pour &, &’ € 0.X, définissons:

di(§,8) =eClEx si £ #E
d.(£,&%) = 0 sinon .
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2.5.1. THEOREME. d, est une métrique sur 0X.

2.5.2. Remarque. d, est une métrique visuelle de parameétres (x, e)
(voir 1.5.1). En effet, ’expression

[(B]&7) — d(x, (EE)) |

est majorée par une constante universelle (voir [G-H], chapitre 2, lemme 17).

Afin de montrer le théoréme, nous introduisons un angle de comparaison,
ou plutdt son sinus: Soit y, ¥y’ deux éléments de X — {x}. Soit (xyy’) un
triangle de comparaison de (xyy") dans Hf{. Posons:

T
s
(2.5.3) ay(y,y') = siny 2y .

14

On peut également exprimer o,(y,y’) sans recourir a un triangle de
comparaison. En effet, d’aprés les formules de trigonométrie dans Hé,
on a:

W (chly =y |—=ch(x—y|—-]x—y D\
o (¥, ¥) = :

2sh|x — y|sh|x -y’

Le théoréme découlera des deux lemmes suivants:

2.5.4. LEMME. Soit S(x,r) la sphére de X, de centre x et de
rayon r. Sur S(x,r), r>0, o, estune métrique.

2.5.5. Preuve de 2.5.4. Seule I’inégalité triangulaire n’est pas triviale.
Soient donc y, z, f appartenant a S(x, r). D’aprés la relation 2.5.3, les valeurs
de o appartiennent a [0, 1]. Aussi, pour montrer ’inégalité triangulaire:

0x(V, 1) < 0x(D, 2) + 0x(3, 1),
supposons:
(1) ax(y,2) + a,(z, 1) < 1.
Soit X, y,z,f € HE, tels que:

a) (xyz) et (xzt) soient des triangles de comparaison de (xyz) et de (xz?).
b) (xz) sépare y et ¢ (voir figure 2).
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FIGURE 2
D’aprés 2.5.3, on a:
T TN
R4 . Zxt
@) 0 (3, 2) = Sin o, ay(z, £) = sin o .
2 2
L’hypothése (1) implique:
~ —
yxz +zxt <m,
de plus:
x-yl=Ix-z[=[x-1],

et (xz) sépare y et ¢. Donc le segment [y 7] coupe [xzZ] en un unique
point u. Soit u € [xz], le point correspondant & u. L’inégalité triangulaire
et I’inégalité CAT (— 1) donnent alors:

<|y—ul+|u-1tf

<y —ul+|u -t

=y -7].
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D’ou

ch|y—t|-ch(fx—y|=|x-tD\"?
“"(y’t)z( 2sh|x — y|sh(|x — ¢ )
<th—ﬂ—de—f%4f—ﬂum'
= 2sh|¥ — 7 |sh(|x — 7|

c’est-a-dire encore:
T

- yxt
(3) a(y,t) < sin —

P e

87

Or yxt =yxz + yxit, et sin(a + b) < sina + sinb, pour a, b appartenant

a [O,g] . Donc (2) et (3) donnent:

0 (¥, 1) < 0e(1,2) + ax(z, 1) . [

2.5.6. LEMME. Soient y € [x§),y’ € [xt’), alors:
lim oa,(y,y") =d:(§, &) .

y—=£
yl_,gl

2.5.7. Preuve de 2.5.6. On a:

ch|y -y’ ch(lx —y|-|x—-y')

Zsh|x—y|sh|x—y’|— 2sh|x — y|sh|x -y’

ay(y,y) = (

Un calcul montre que:

ch(lx-y|-|x-»"]

= s (coth |x — y|coth|x —y'| - 1).

2sh|x — y|sh|x -y’

Cette expression tend vers 0 lorsque y — &, y" — £’. Par ailleurs:

ch|y -y
2sh|x — y|sh|x -y’

~ely=yl=lx-yl-lx-y'| = g-201¥"x ,

or d’apres la proposition 2.4.3, on a:

lim (y|y )= (E|&)x-
y—£
y e

D’ou le lemme. [

)1/2
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2.5.8. Preuve du théoréme 2.5.1. Seule I’inégalité triangulaire n’est pas
triviale. Elle résulte des lemmes 2.5.4 et 2.5.6. [

2.5.9. EXEMPLES.

a) Prenons X = Hy. Soit x le centre du modéle en boule. Alors:
/T

do(, £ = sin 2

7

est la moitié de la longueur du segment euclidien reliant & a £’ (voir figure 3).

FIGURE 3

Ce n’est pas la métrique naturelle sur 3.X, qui est la métrique angulaire.

, . . . o1
Néanmoins elle lui est conforme, de facteur conforme constant €gal a ;5.

b) Si X est un arbre réel:
dx(E.,, E:’) = e~ (E|E, ,

ou (£]&"), est la longueur du trajet que font ensemble les deux rayons
géodésiques issus de x et allant vers & et &' (voir figure 4).
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S

Ficure 4

2.6. STRUCTURE CONFORME SUR 0.X

Nous montrons maintenant que la famille de métriques {d,,x € X},
définit une structure conforme sur 8.X. On a:

2.6.1. PROPOSITION. Soit x wune origine dans X et y,z deux
éléments de X. La fonction sur (0X,d,), définie par:

& Be(»,2)

est lipschitzienne.

2.6.2. Preuve. D’aprés les relations 2.2.1 et 2.2.2, on a:
By(y,2) = — Be(x,») + Be(x, 2) .
Aussi, il suffit de montrer que la fonction:
& Be(x, )

est lipschitzienne sur (00X, d,). D’apres la définition des métriques d, et
d’apres la relation 2.4.2, on a:

1

dy(5,8") = dx(§,8)e?

(Be (x,y) + By (x,))

ou €ncore

(1) Be(x,y) = 2logd,(§,8") — 2logd.(E,E") — Be:(x,y) .



90 M. BOURDON

Supposons que 3.X ne soit pas réduit a un point. Soit alors V un petit
voisinage compact de &, et £ un élément fixé en dehors de V. La fonction:

¢~ 2logd«(E,8)

est lipschitzienne sur (V,d,). Les métriques d, et d, étant des métriques
visuelles de paramétres respectifs (x,e) et (y,e), elles sont Lipschitz-
équivalentes (voir 1.5.3.b). Donc la fonction

&~ 2logd,(8,¢8")

est également lipschitzienne sur (V,d,). Dés lors, par la relation (1), la
fonction:

&HBé(x,y)

est lipschitzienne sur (V, d,). Maintenant la compacité de (0.X, d,) montre
qu’elle est lipschitzienne sur 8.X. [

2.6.3. COROLLAIRE.

a) Quels que soient les éléments x et y de X, les métriques d, et d,
sont conformes.

b) Soit g wune isométrie de X. Alors g est une application conforme
de (0X,d,), dont le facteur conforme en E est:

|gl(i) |x —_ eBé(x,g—lx) .
2.6.4. Preuve:

a) D’aprés la relation 2.4.2 et la définition des métriques d,, on a:

L (Be ) + Ber ()

dy(§,8') =dx(§,8)e?

Donc la proposition 2.6.1 donne:

HEE) |

dx(§,87) &'°

ce qui montre que d, et d, sont conformes.

b) Puisque g est une isométrie de X, on a:
(88188 = (§]&)g-1x -
Donc:
d. (88, 88"} = dg-1:(E, )

et la fin de la preuve est identique au (a). [
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2.6.5. EXEMPLES.

a) Prenons X = Hj et x le centre du modéle en boule. Le groupe Isom (Hg)
agit par transformations conformes sur la sphere S” munie de la métrique
euclidienne. Notons | g"(£) | le facteur conforme en & d’un clément g
de Isom (Hg). D’aprés ’exemple 2.5.9(a) on a:

le’(&) “ = ‘g'(&) | = eBelx,g71x)

b) Prenons X = H¢ et normalisons la métrique afin que sa courbure soit
comprise entre —4 et — 1. Soit x le centre du modéle en boule.

Le groupe Isom(HZ) laisse invariant le champ d’hyperplans {P:,€ € S},
défini par:

Pe={ueTS"1'; h(§,u) =0}

ou A est la forme hermitienne de C”:

n
h(En u) = Z Fﬁil_li .
i=1
Il agit par transformations conformes sur {P;,& € S?"~!} muni de la
métrique euclidienne. Notons | g’(€) | le facteur conforme sur P d’un
élément g de Isom (H¢). Nous allons voir qu’a nouveau:

lg' (&) [ = ePete™ = | g"(8) | -

Pour ce faire, ramenons-nous a I’exemple a) par un argument de
D. Sullivan ([Su], p. 176). Observons tout d’abord que || g’(§) || ne dépend que
de g~ 'x. En effet, si & € [som (H) vérifie A~ 'x = g~ 'x, alors la composée
g o h~! fixe x le centre du modele en boule, donc g © A~! appartient a
U(n) et:

le'@ I =1rE].

Choisissons donc judicieusement 4. Notons y Dintersection de [’horo-
sphére H;, basée en &, contenant g~!x, avec la géodésique (x£). Le stabi-
lisateur de H dans Isom (H¢) agit transitivement sur H;, de plus le facteur

conforme de ses €léments en Py est 1. Soit p un élément de Stab(H),
vérifiant

p(g~'x)=y.

Soit aussi une copie de Hy contenant la géodésique (x&). L’espace tangent
a son bord en ¢ est contenu dans Py . Soit # un élément de Isom (H{) qui fixe
cette copie et envoie y sur x.
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D’apres ’exemple (a), on a:
[£/(E) | = eBexn) = eBexig='n)
Par ailleurs, la composée A = t o p vérifie h—1x = g~ 1x, d’ou:

le' @ 1= 1@ 1o/ | =@ | = estnen

2.7. MESURES CONFORMES SUR L’ENSEMBLE LIMITE D’UN GROUPE QUASI-
CONVEXE

Soit I' un groupe quasi-convexe d’isométries de X (voir 1.8), non
¢lémentaire. Son ensemble limite A hérite de la structure conforme de 8.X.
Notons p(x, y, &) le facteur conforme en & € A, de 1’application identité
de (A, d,) sur (A, d,). D’aprés le corollaire 2.6.3 (ou plutdt sa preuve),
on a:

(2.7.1) plx, y, &) =eBexn) |

D’autre part, d’apres le corollaire 2.6.3, I agit par transformations conformes
sur (A, d,). Le facteur conforme de g e I' en &, est:

(2.7.2) g’ (E) |x=p(x, g7 'x, &) .

Comme dans le cas des groupes convexes cocompacts d’isométries
de Hg, on définit la notion de mesure a-conforme sur A (voir [Su], [N],
et [C] pour une notion analogue sur les espaces hyperboliques généraux):

La collection de mesures {u,,x € X} est une mesure o-conforme,
si pour tout x € X, u, est finie non nulle, de support inclus dans A, et si
pour tout x,ye X et geI:

(2.7.3) wy = [p(x,», )] 1,
g*U'xz Wg-1x = lg’ ;IJ.X .

La théorie des mesures conformes est essentiellement la méme que pour les
groupes convexes cocompacts de Hy. La seule différence est qu’une boule
de A n’est pas en général une ombre. Néanmoins elle en est presque une
d’aprés 1.6.2. Soit © la dimension de Hausdorff de (A, d,). Soit v, la
t-mesure de Hausdorff de (A, d,). On a:

2.7.4. THEOREME. La collection {v,,xe X} est une t-mesure
conforme. De plus, toute mesure conforme est une t-mesure conforme,
égale a une constante prées a {v,,x € X}.

De plus:




FLOT GEODESIQUE D’UN CAT(—1)-ESPACE 93

2.7.5. THEOREME.

a) La dimension T est égale au taux de croissance de T dans X.
C’est-a-dire:

— 1
1= lim —log#{gel||x—gx|x<n}.
n—+o N
b) La v,-mesure d’une boule de (A, d,), est proportionnelle a son rayon
d la puissance T. Autrement dit: il existe une constante C, > 1, telle que
pour toute boule B(&,r) centrée sur A, on ait:

C;'r'< v (B(§, 1) < Curt.

Rappelons les principales étapes de la démonstration de ces résultats:

] ny
Soit ap = lim —log#{geT||x — gx|x < n}.S.J. Patterson a exhibé

n— +
une mesure aoy-conforme (voir par exemple [Su], p. 175). D’autre part
d’aprés D. Sullivan, si {p,,x € X} est une a-mesure conforme, alors la
i, mesure d’une boule de A est proportionnelle a son rayon a la puissance o
(c’est le lemme de I’ombre [Su], p. 180). Dés lors par un principe général, o
(et en particulier oy) est égal a 1, les mesures u, et v, sont absolument
continues ’une par rapport a ’autre et leurs densités sont bornées. Ainsi on
obtient 2.7.5. Maintenant puisque v, est finie, {v,, x € X} est une T-mesure
conforme (voir 2.6.3). Deux t-mesures conformes absolument continues 1’une

par rapport a l’autre sont égales (voir [Su], p. 181). Le théoréme 2.7.4
en découle.

2.8. FLOT GEODESIQUE ASSOCIE A UNE ACTION QUASI-CONVEXE

Soit X un CAT (—1)-espace, sur lequel agit I" par isométrie de maniére
quasi-convexe. Notons A I’ensemble limite de I" dans 8.X . Définissons GA

I’ensemble des géodésiques (paramétrées) de X, dont les extrémités
appartiennent a A:

GA = {y: R — X isométries avec y(— ®) € A, y(+ ®) e A}.

Et €quipons-le de la métrique suivante:

ly — v’

e e~ Il
GA:§ ly() =y (8) |x 5 dt .

— o

La topologie associée est celle de la convergence uniforme sur les compacts.
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En effet, on a:

2.8.1. PROPOSITION. Quel que soit T > 0, alors:

e T sup |y(®) -7 @I|x<|y -7 |oa

te[-T,T]
< sup |y —y'(D)|x+2eT.
te[-T,T)
2.8.2. Preuve. L’inégalité de droite est un simple calcul. L’inégalité
de gauche provient de 1’inégalité de Jensen appliquée a la fonction convexe
(voir 1.3):

iy — v (@) ]x. 0O

Clairement, le groupe I' agit par isométries sur (GA, | |g») de maniére
proprement discontinue. L’espace métrique quotient:

%€ =GA/T

est I’espace du flot géodésique, associé a la paire (X, I'). Notons que % est
compact. En effet, I" est quasi-convexe, donc le quotient de I’enveloppe
de Gromov de A par I' est compact (voir 1.8.6).

Le flot géodésique de GA est le groupe a un paramétre d’homéo-
morphisme {®;, T € R}, provenant de ’action naturelle de R sur GA. Il est
défini par:

(2.8.3) ®r(y) =vr, avec yvr(f)=yv(+7T).
Remarquons que pour tout Te R, g eI, et y € GA:
(2.8.4) @r(gy) =897 (v).

Le flot géodésique de ¥ est le groupe a un parametre d’homéomorphismes,
induit sur % par la relation 2.8.4. On le notera encore {®7, T € R}.

Par analogie aux flots d’Anosov, on définit les sous-ensembles fortement
stables et fortement instables de (GA, ®7). En vy € GA, ils sont respec-
tivement définis par:

Wss(y) = {n e GA||®r(n) — Or(y) |GA::O}

wus(y) Z{Tl e GA||®_r(M) — ©_7(Y) |6a ::0} ‘

Ils forment un feuilletage ®,-invariant de GA. D’aprés 2.3.1, ils sont liés
aux horospheéres de la maniére suivante:
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wss(y) = {n € GA|Nn(0) € Hy@),y(+ )N+ ) = y(+ o)}
wuu(y) = {n e GA|Nn(0) € Hy),y(- =), N(— ) = y(— )} .

Observons qu’ils sont canoniquement homéomorphes a A privé d’un point.
On définit les sous-ensembles fortement stables et instables de (%, ®r) par:

(2.8.5)

2.8.6. DEFINITION. Soit w la projection de GA sur &, alors:

wss(n(y)) = m(W*(y))
W (n(y)) = (W (y)) .
Le sous-ensemble faiblement stable (resp. instable) de GA en vy, est la

réunion des sous-ensembles fortement stables (resp. instables), le long de
I’orbite de y sous ® ;. En d’autres termes:

Ws(y) = U Ws(@r(y)) ={neGA|[n(+ ) =y(+x)}

TeR

wey) = U W (@r(y)) = {n e GA[n(= ) = y(- »)}.

TeR

De méme, sont définis les sous-ensembles faiblement stables et instables de Z.
D’apres la définition 2.8.6, ils sont correspondance avec ceux de GA, via la
projection de GA sur %.

2.9. LE PARAMETRAGE DE HOPF DE (%, ®1)

Choisissons une origine x dans X. Soit A la diagonale de A X A. On définit
une application de (A X A — A) X R dans GA, de la maniére suivante: a

w

£_

FIGURE 5
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I’élément (£_,&,,7) de (A X A — A) X R, associons I’unique élément vy
de GA vérifiant (voir figure 5):

(2.9.1) V(=) =&_,y(+®) =E&,,B (x,7(0) =1.

Le lecteur vérifiera aisément que [’application ainsi définie est un
homéomorphisme. Notons que dans ces coordonnées @ s’écrit:

(292) (DT(a—a‘t3+st):((ta—)a+>t+T)'

Notons également que les sous-ensembles fortement stables du flot ont pour
coordonnées (voir 2.8.5):

(293) {(é—)&+>t)> E.v— EA—{§+}}
Par ailleurs, en coordonnées 1’action de I' s’écrit:
(2.9.4) g(&_,8.,1) =(gt_,g8,,t— B¢, (x,g7'%).

Aussi, on obtient un homéomorphisme:
(2.9.5) AXA-ANxXR/.—> %

en définissant la relation d’équivalence suivante sur (A X A — A) X R:

(&—:g+:t)~(&’—>él+at’)

si et seulement si, il existe g e I tel que:

&,— :ga-—’a:— :g&+>t,:t_Bé+(X9g_1x) .

2.10. MESURE D’ENTROPIE MAXIMALE

On rappelle ici une construction de la mesure d’entropie maximale du flot
géodésique, due a D. Sullivan ([Su], [Su2]), dans le cas des groupes convexes
cocompacts d’isométries de Hy, puis généralisée par V. Kaimanovich [K].

Soit x un élément de X, et soit respectivement T et v, la dimension et
la mesure de Hausdorff de (A, d,) (voir 2.7). La mesure:

Ve XV
[d.(&, &%

est une mesure de Radon sur A X A — A. Elle est indépendante de x et
I'-invariante. En effet {v,,v € X} est une mesure t-conforme (voir 2.7.4),
de plus d’aprés 2.4.2 et 2.7.1:

dy(§,8') = dx(§,8") [p(x, 2, &) p(x,», )] .

(2.10.1) n
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Le paramétrage de Hopf permet d’identifier GA a (A X A — A) X R,
Soit alors m la mesure sur GA définie par:

m=u X dt.

C’est une mesure de Radon. I'-invariante et ®,-invariante. La mesure m,
restriction de m au compact &, (considéré comme un domaine fondamental
de " dans GA), est finie et ®r-invariante. On a:

2.10.2. THEOREME. ®; est ergodigue sur (%, m).

La preuve de ce théoréme est mot pour mot la preuve classique de
Hopf [Ho]. Le point essentiel est que p s’écrive comme un produit de deux
mesures sur A.

Clairement, ’ergodicité de ®; sur (&, m) est équivalente a celle de T’
sur (AX A—A,u). Puisque p et v, X v, sont absolument continues,
Iergodicité de T sur (A X A — A, p) entraine ’ergodicité de T sur (A, v,).
D’ou,

2.10.3. COROLLAIRE. L’actionde T estergodique sur (A X A — A, p)
et sur (A, vy).

Notons respectivement 4 et 4,,, ’entropie topologique de ®; et I’entropie
mesurable de (®7,m). Elles se calculent comme dans le cas convexe
cocompact (voir [Su2], p. 275-276, [K]). On obtient:

2.10.4. THEOREME. h = h, =1. Ainsi m maximise [’entropie
mesurable.

2.11. PREUVE DU THEOREME 2.0.1.

Nous renvoyons a lintroduction pour les notations. Nous montrons
d’abord deux lemmes:

Soient x, X, des origines respectivement de X; et X,. Notons d, et d,
les métriques d,, et dy, sur Ay et A,.

2.11.1. LEMME. Supposons que [l’application Q: Ay, dy) (A, dy)
soit conforme. Alors, son facteur conforme ® est continu sur A,

2.11.2. Preuve de 2.11.1. Puisque Q est conforme, les ensembles
limites A; et A, ont méme dimension de Hausdorff 1. De plus, en notant v,
et v, les T-mesures de Hausdorff de (A;, d,) et (Ay,d,), on a:

(1) Q*v, = @Tvy.
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Soit p; et p, les mesures sur A; X Ay — A et A, X A, — A, définies
par la relation 2.10.1. D’aprés 1’égalité (1), la mesure:

(Q X Q)*u,

est absolument continue par rapport a p;. De plus, p, est I'-invariante
et Q est I'-équivariant, donc (Q x Q)*pu, est I'-invariante. Alors, puisque
I’action de T est ergodique sur (A; X A; — A, ;) (corollaire 2.10.3), les
mesures (2 X Q)*u, et u; sont égales a une constante prés. Donc, a une
constante pres leurs densités par rapport a v; X v; sont presque siirement
égales. D’ou v; X v;-presque sirement:

0 ()™ (&) Cste

[di(8,EN]%  [da(Q(E), QEN]>’

soit encore

[d>(Q(8), Q(EN)]? = (Cste) " (§) @ (§") [di(E, E1)]* .

L’application Q:(A;,d;) = (A,,d,) étant continue, o P’est également.
Notons qu’en faisant tendre &’ vers £, on trouve Cste = 1. [

Soit maintenant s; ’involution de GA; définie par:

si(y) =v" avec vy'(t) =v(-1).

Par passage au quotient on obtient une involution de %; que ’on notera
encore s;.

2.11.3. LEMME. Supposons que [’homéomorphisme G: %~ &,
conjugue les flots géodésiques. Quitte a remplacer G par G = ®r 0 G
pour un certain réel T,, on peut supposer:

GOS1=S20G.

2.11.4. Preuve de 2.11.3. Soit T la fonction sur %, dans R, définie
de la maniére suivante: Etant donné vy € %;, T(y) est Punique réel vérifiant:

(1) D7y (G @ Sl(Y)) =50 (I)T(Y)(G(Y)) .

La fonction 7 est continue et invariante par le flot de %,. Aussi elle est
constante (par D’ergodicité du flot sur (&, m,;); (théoréme 2.10.2)).
Notons T, la valeur constante de T, et G' I’application ® 1, © G. D’apres (1),
on a:

G,OSI=.5'20G,. D
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2.11.5. Preuve de 2.0.1. Montrons (i) = (ii).

Soit g e T. Notons respectivement | g’ |, et | g’ |,, le facteur conforme
de g sur (A;,d,;) et (A,, d,). En écrivant:

Qog=go0Q.
et en calculant le facteur conforme des deux membres, on obtient:

(1) (wog)lg 20 Qo .

Construisons maintenant notre conjugaison: Paramétrons GA; et GA,
comme au paragraphe 2.9, en choisissant pour origines les points x; et x,.
Définissons une application G de GA; dans GA,, par:

G(E_,E,,1) = (Q(E),Q(E.), t — logw(E,)) .

D’aprés le lemme 2.11.1, o est continue, donc G est un homéomorphisme.
D’aprés la relation 2.9.2, il conjugue les flots de GA;, et GA,. De plus,
quel que soit g € I', il vérifie:

1=(|g’

(2) Gog=goG.
En effet, d’apres 2.9.4 on a:
Gog)(E_,E,,0)
=(Qog(§.),Q0g(&,),t— B, (x1,8 %) —logw © g(&.))
et
(g0 G (E-,E.,0)
= (80 Q(E-), g0 Q(E4), t —logw(E,) — Bae,) (X2, 87 'x2)) .
Or d’aprés le corollaire 2.6.3,

B£+(X1sg_lxl) = 10g|g'(§+) |1

et

2 © Q(Ew)) .

Ainsi I’égalité (2) provient de (1) et de la I'-équivariance de Q. Grace
a (2), on obtient une conjugaison des flots de €, et %,. Par construction,
elle induit ’application F entre &, et &, .

Bo (X2, 87 1x,) = log(| g’

Montrons (ii) = (i).
Soit G: &, = %, une conjugaison des flots, qui induit ’application F
entre 7, et #,. D’aprés le lemme 2.11.3, on peut supposer:
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(3) Gos =5,00G.

Relevons la conjugaison G & GA,; et GA, de la maniére suivante: Soit 7;
la projection de GA; sur %;. Pour y:R — X, appartenant a GA,, soit
v :R— X,, un élément de GA, vérifiant:

Y'(—®) = Q(y(—®)), v'(+x)=Q(y(+ x))

et

ma(y') = G(mi (7)) -

Notons que vy’ existe puisque G induit F entre #; et #,. De plus, si w;(Y)
n’appartient & aucune orbite périodique de &;, vy’ est unique. On obtient
ainsi une application

G: GA| — GA,
Yy
définie sauf sur les relevés des orbites périodiques, qui conjugue les flots,
vérifie:
GOomy=m,0 G.
ainsi que, d’apres ( 3):
4) , GOSI:SZOG.

Paramétrons GA,; et GA, comme au paragraphe 2.9, en choisissant les
points x; et x, comme origines. Puisque G est une conjugaison continue entre
les compacts &, et %,, elle est uniformément continue. Aussi elle envoie
sous-ensembles fortement stables sur sous-ensembles fortement stables.
D’aprés sa définition et la proposition 2.8.6, G a la méme propriété. Aussi,
d’aprés 2.9.3, G s’écrit en coordonnées: ‘ |

GE_, &, 1) = (QE), QL) t—logn(E,)),

pour une certaine fonction ® de A; dans ]0, + o[. Notons que ceci permet
de définir G sur GA, tout entier.

Comparons maintenant les métriques d; = d,, et d, = d,, sur A; et A;:
Soit € et £’ deux points distincts de A;, et p appartenant a (£¢”"). Soit vy
I’élément de GA,, vérifiant:

Y(—®) =&, y(+o)=8& e y@O0)=p.
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Les points G(y)(0) et f?(sl(y)) (0) appartiennent a la géodésique
(Q(E)Q(E")) de X,. D’apres (4) ils sont égaux. Notons-les g. En coor-
données on a:

Y= (‘tw &I’Bi'(xl ’p))

et
si(y) = (&', &, B:(x1,p)) -
D’ou:
G(v) = (Q(8), Q(E"), Ber(x1,p) — log (&)
et
G(s1(7)) = (Q(&"), (&), Br(x1,p) — log® (&)
donc

5)  Boey(x2,@) = Bae(x2, G(¥)(0)) = Be:(x1,p) — logw (&)
et
6)  Bow (X2, ) = Bag (x2, G(s1(1))(0)) = Be(x1,p) — logo(§) .
Ainsi (5) et (6) donnent:

[dx(Q(8), QEN]? = 0(E)o(E") [di (&, §)]> .

Puisque l’application Q de (A;,d;) sur (A,,d,) est continue, ® I’est
également. Alors, en faisant tendre &’ vers &, Q est conforme de facteur
conforme . [
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