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1.7. Groupes hyperboliques

Soit T un groupe de type fini et S {a i9i 1, ...,5*} un système de

générateurs de T. Supposons S symétrique, c'est-à-dire:

V/ e {1, s}; ai ^ e

et

ai e S ^ a^1 e S

La métrique des mots relative à S, est définie de la manière suivante:

\g ~ g'\s inf{^ e N | g~lg' ah ain, aik e S}

La distance | e - g \s sera généralement notée | g\s. Observons que T agit à

gauche par isométries sur (T, | |s).

Le graphe de Cayley Sf(T, S) est un 1-complexe simplicial géodésique

et propre, dans lequel (T, | |s) est plongé isométriquement. Ses sommets

sont les éléments de T, deux sommets g, g' sont reliés par une arête si

g~lg'eS, c'est-à-dire si |g-g'|s=l- Il est muni de la métrique

simpliciale, c'est-à-dire de la métrique de longueur qui donne à chaque arête

une longueur un.

1.7.1. Définition. Le groupe r est hyperbolique si l'espace métrique
géodésique propre ^ (r, S) est hyperbolique.

D'après l'invariance de l'hyperbolicité par quasi-isométrie, cette définition
est indépendante du système de générateurs S. En effet, si S' en est un autre,

(r, | |s) et (r, | |s')> et par suite ^ (r, S) et ^(r, S') sont quasi-isométriques.

1.7.2. Exemples et propriétés. Sont hyperboliques:

a) Les groupes finis.

b) Les groupes libres de type fini.

c) Les groupes à petite simplification C'(l/6). (Voir [G-H], Appendice.)

Un groupe hyperbolique jouit des propriétés suivantes:

a) Il est de présentation finie, et «presque tout» groupe de présentation finie
est hyperbolique (voir [Ch], théorème 1.3.2).

b) Il ne contient qu'un nombre fini de classes de conjugaison d'éléments de
torsion (voir [Ch], p. 20).

c) Il ne contient aucun sous-groupe abélien de rang supérieur ou égal à 2.
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d) Ou bien il est fini, ou bien il est une extension finie de Z, ou bien il contient

un groupe libre de rang au moins deux. Dans les deux premiers cas il est

dit élémentaire. S'il est non élémentaire, il est à croissance exponentielle

([G-H], chapitre 8, théorème 37).

e) Il est automatique (voir [C-D-P], [C-E-H-P-T]).

1.8. Groupes quasi-convexes

1.8.1. Définition. Soit X un espace métrique géodésique propre,
et x un élément de X. Un sous-groupe d'isométries de X est quasi-convexe,
s'il est proprement discontinu, et si l'orbite de x est un quasi-convexe de X.

On vérifie que la définition est indépendante du point x choisi. Notons

qu'un sous-groupe d'isométries proprement discontinu cocompact, est quasi-

convexe. La propreté de X permet de montrer:

1.8.2. Proposition. Un groupe quasi-convexe r d'isométries de X,
est de type fini. De plus, si S est un système symétrique de générateurs
de T, l'application:

(r. | |s) - x
g^ gx

est une quasi-isométrie.

Pour montrer cette proposition, il suffit d'exhiber un système de

générateurs S adéquat. Si l'orbite de x est C-quasi-convexe, on vérifie que
l'ensemble:

S - {at e T — {e} | | x - tf/X \x ^ 2C + 1}

convient.

Supposons maintenant X hyperbolique. Alors, par l'invariance de l'hyper -

bolicité par quasi-isométrie:

1.8.3. Corollaire. Tout groupe quasi-convexe d'isométries d'un

espace hyperbolique, est hyperbolique.

Par l'invariance des quasi-convexes par quasi-isométries, on obtient la

caractérisation suivante des groupes quasi-convexes:

1.8.4. Corollaire. Soit T un sous-groupe d'isométries d'un espace

hyperbolique X. Les assertions suivantes sont équivalentes:

a) T est quasi-convexe.
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