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72 M. BOURDON

1.6. Action au bord des quasi-isométries

Commençons par rappeler la définition d'application quasi-conforme.
Un k-anneau, k > 1, d'un espace métrique (E, d), est un couple {Bi, B2)

de deux boules concentriques, dont les rayons n et r2 vérifient la relation:

est quasi-conforme (au sens des anneaux), s'il existe une fonction \j/ de [1, + oo [

dans lui-même, telle que l'image par / de tout k-anneau est contenue dans

un \|/(/:)-anneau de {E\d'). Autrement dit, si {B\,B2) est un k-anneau
de (.E, d), alors il existe un \j/(/:)-anneau (B[,B2) de (£", df), tel que:

Notons en particulier que l'image d'une boule de (E, d) est contenue dans

un \j/(l)-anneau de {Er,d').
Un homéomorphisme / est quasi-conforme si / et f~l sont quasi-

conformes. De même, un plongement est quasi-conforme, s'il est un
homéomorphisme quasi-conforme sur son image.

Afin de décrire les boules, et par suite les anneaux d'une métrique visuelle

sur le bord d'un espace ô-hyperbolique, rappelons la notion classique

d'ombre:

1.6.1. Définition (Margulis). Soit x une origine dans X. L'ombre
portée à partir de x, de la boule B(y,R) de X, est le sous-ensemble de dX

r2

Une application:

/:(£, d)-+(E\d')

B[ C /(B!) C f(B2) C B2

x

Figure 1
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noté 0{y, R), des extrémités des rayons géodésiques issus de x passant par

B(y,R). On dit que 0(y,R) est centrée en Ç, si y appartient à un rayon

géodésique [x£>). (Voir figure 1).

Etant donnée une métrique visuelle d de paramètres (x, t) sur dX, à

l'ombre 0{y,R) attachons le rayon:

r(y) t-\x~yI

La propriété de visibilité donne alors:

1.6.2. Lemme. Pour R suffisamment grand, (R^ 55 convient), il
existe une constante D D(R) ^ 1, telle que pour toute boule B(f,r)
de (§X,d), on puisse trouver des ombres 0{yx,R) et 0(y2,R)
centrées en vérifiant:

0(y\, R) C B(Z,r) C 0(y2,R)

et

R>~lr(y2) < r ^ Dr(yx)

Ainsi, les boules de (dX, d) ressemblent aux ombres.

Preuve de 1.6.2. Rappelons qu'il existe une constante C ^ 1 telle que

pour tout point E,, de dX on ait:

(1) C~lt~d<d(£,, V) < ct~davec (ÇV)) •

D'autre part observons que tout triangle de lu est 5ô-fin
(voir 1.4.1.b)).

Soit R ^ 5ô, £, un point de dX, B(t,,r) une boule de dX centrée en

et y un rayon géodésique joignant x à £,. Prenons y2 le point de y vérifiant:

\x - y2\ max{0, - log, Cr -56-1}
et montrons que B(l,,r) est contenue dans 0(y2,R). Soit If un point
de £(£,,r), le triangle (*££') étant 5ô-fin, on a:

dL2,[xV)u(^'))<58
Or par l'inégalité triangulaire et (1):

d(y2,(&'))>d(x, (&'))- \ x-y2\
> - log,Cr - - |

>55+1
donc: r/(+2,[*V)) < 55 < Ret £, appartient à 0(j>2,.R).
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Prenons yx le point de y vérifiant:

I x - yi { - logt ^ + R + 10Ô

(d'après (1), r ^ C, donc - logt(r/C) + R + 106 ^ 0) et montrons que

B^.r) contient 0(yi,R). Soit Zf un point de 0(yi9R), y' un rayon
géodésique joignant x à Ç passant par B(yl9R),P un point appartenant
à y n B(yi, R) et Q un point de (££') vérifiant:

Considérons le quadrilatère (yiPZsZs/), en le subdivisant en deux triangles,
on voit qu'il est lOô-fin, aussi:

i(Ö.[^i]u[PV)ub'iW<108.
D'autre part:

DPyi] u [P^') u |>iO) 3= I* - 7i I -
Donc:

cf(x,(^')) =|x- Q\

> d(x, [pyi] u [Pï') u [j^)) - d(Q, [Pyx] u [PÇ') u [yf,))

^\x y i
\ - R - 106 - log, ~

alors d'après (1), Zf) ^ r et Zf appartient à B(E,, r).
On a donc trouvé deux ombres centrées en Z, qui vérifient:

0(ylfR) C B(t;,r) C 0(y2,R)

Leurs rayons satisfont:

r(yù t-R-l0dC~1r et r(y2) ^ t5b + xCr

Posons D max{^+ 10ÔC, CÔ + 1C}. On obtient:

D-1r(y2)<r< Dr{yx)

De manière symétrique, on a aussi:

1.6,3. Lemme. Pour R suffisamment grand (R^ 58 convient),

il existe une constante E E(R) ^ 1, telle que pour tout Z, e dX et toute

ombre 0(y,R) centrée en £, on puisse trouver des boules Bfâ,ri)
et B(Z,, r2) de (dX, d) vérifiant:
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B(t„rx)C 0(y,R)C B&,r2)

avec

E~lr2 ^ r(y) < Erx

Preuve de 1.6.3. Elle est semblable a la precedente, dormons-la

néanmoins. On reprend les notations de la preuve de 1.6.2.

Soit r\ *»= C~1t~3è~lr(y), montrons que B{^,rx) est contenue dans

Ö(y, R). Soit un point de n). Le triangle (x£Ç'} étant 5S-fin, on a:

tf(>, [*£') u (ÇÇ')) < 50 •

D'autre part, d'après l'inégalité triangulaire, les inégalités (1) et le choix

de ri :

rfCMU')) -\x~y\
^ - logtdft, £') - log,C + log,r(y)

^ 5 ô + 1

donc é/(>, [*£')) < 58 < Ä et appartient à 0(y, R).
Soit r2 CtR + mr(y). Montrons que B{l^r2) contient 0(y,R). Soit %'

un point de 0(y,R); comme dans la preuve de 1.6.2, on a:

d(x,(^f))>\x-y\-R- 108.

Donc d'après (1) et le choix de r2:

d(£,V) < CtR + l0*r(y) r2

et £/ appartient à B(^,r2).
Posons E max{CY5ô + 1, CY* + 10S}, on obtient

E~l r2 ^ r(y) ^ £>!

D'après la propriété des quasi-rayons géodésiques dans un espace

hyperbolique, l'image d'une ombre se compare aisément à une ombre. Ainsi,
et en utilisant les lemmes 1.6.2 et 1.6.3, on obtient la généralisation suivante

d'un théorème de Margulis.

1.6.4. Théorème. Soit X et X' deux espaces hyperboliques.

Supposons leurs bords équipés de métriques visuelles.

a) Toute quasi-isométrie f de X dans X' s'étend en un plongement
quasi-conforme, bi-Hölder, de dX dans dX'.
b) Si X et X' sont quasi-isométriques, leurs bords se correspondent par
un homéomorphisme quasi-conforme bi-Hölder.
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Preuve de 1.6.4. Il suffit de montrer a). Soit x une origine dans X,
prenons pour origine de X' le point /(x). Soit respectivement d et d'des
métriques visuelles de paramètre (x, t) et /(x), t') sur dX et dX'.

Par la propriété des quasi-rayons géodésiques (1.4.1.c)), / s'étend en une

application de dX dans dX', notée 9/. C'est un plongement bi-Hölder à cause
des définitions des métriques visuelles et de la propriété des quasi-géodésiques.

Pour montrer que 9/ est un plongement quasi-conforme, on utilise les

ombres :

Soit £, un point de dX, y2 et yx deux points dans cet ordre sur [x^),
0(yx,R) et 0(y2iR) les ombres portées depuis x des boules B(yuR)
et B(y2,R) de X. Par la propriété des quasi-rayons géodésiques, il
existe des constantes R\ > 0 et R2> 0 qui ne dépendent que de R, des

constantes de quasi-isométrie de / et de l'hyperbolicité de X et de X'\ avec les

propriétés suivantes: Notons y[ et y2 les projections de f(yx) et de /O2)
sur [/(x)8/(^)). Soit 0(y[,R 1) et 0(y'2,R2) les ombres portées depuis

/(x) des boules B(y[,Rx) et B(y2,R2) de X'\ elles sont centrées en 9/(Ç).
Alors si R a été choisi suffisamment grand:

0(y\,Rx) n 9/(8*) C df (0(yl9R))
C 9f(0(y2,R)) C 0(y2, R2) n df(dX)

De plus le rapport des rayons des ombres 0(y{,Rx) et 0(y2,R2) est borné

par une fonction du rapport des rayons de 0(yx,R) et de 0(y2,R) qui ne

dépend que des constantes de quasi-isométrie de /, de l'hyperbolicité de X
et de A', et des paramètres t et tr.

Alors les lemmes 1.6.2 et 1.6.3 montrent que 9/ est quasi-conforme sur
son image. De façon analogue, 9f~l est quasi-conforme de df(dX) sur dX.
Ainsi 9/ est un plongement quasi-conforme.

1.6.4. Remarque. Deux métriques dx et d2 sur un même espace E sont
dites quasi-conformes si l'identité de (E,dx) sur (E,d2) est un homéo-

morphisme quasi-conforme. Clairement la composée de deux applications
quasi-conformes est quasi-conforme. Aussi, la relation: «d\ et d2 sont quasi-

conformes», est une relation d'équivalence sur l'ensemble des métriques de E.
La classe d'équivalence d'une métrique d de E est appelée structure quasi-
conforme de (E, d). (Voir [Pan] pour une définition plus générale). Le
théorème 1.6.4.(b) indique que la structure quasi-conforme d'une métrique
visuelle sur dX, est un invariant de quasi-isométrie de X.
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