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72 M. BOURDON

1.6. ACTION AU BORD DES QUASI-ISOMETRIES

Commencons par rappeler la définition d’application quasi-conforme.
Un k-anneau, k > 1, d’un espace métrique (E, d), est un couple (B;, B,)
de deux boules concentriques, dont les rayons r; et r, vérifient la relation:

r2=kr1. /|,

Une application:
fi(E, d)—(E',d")

est quasi-conforme (au sens des anneaux), s’il existe une fonction y de [1, + oo
dans lui-méme, telle que I’image par f de tout k-anneau est contenue dans
un y(k)-anneau de (E’,d’). Autrement dit, si (B;,B;) est un k-anneau
de (£, d), alors il existe un y(k)-anneau (B, B;) de (E’,d’), tel que:

By C f(B1) C f(B2) C B;.

Notons en particulier que I’image d’une boule de (E, d) est contenue dans
un y(1)-anneau de (E’, d’).

Un homéomorphisme f est quasi-conforme si f et f~-! sont quasi-
conformes. De méme, un plongement est quasi-conforme, s’il est un
homéomorphisme quasi-conforme sur son image.

Afin de décrire les boules, et par suite les anneaux d’une métrique visuelle
sur le bord d’un espace &-hyperbolique, rappelons la notion classique
d’ombre:

1.6.1. DEFINITION (Margulis). Soit x une origine dans X. L’ombre
portée a partir de x, de la boule B(y, R) de X, est le sous-ensemble de 0.X

§ }0(«‘:’ R)
X (%

J

FIGURE 1 a—X
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noté O(y, R), des extrémités des rayons géodésiques issus de x passant par
B(y, R). On dit que O(y, R) est centrée en &, si y appartient a un rayon
géodésique [x&). (Voir figure 1).

Etant donnée une métrique visuelle d de paramétres (x,?) sur 90X, a
I’ombre O(y, R) attachons le rayon:

r(y) = t=lx=»l,
La propriété de visibilité donne alors:

1.6.2. LEMME. Pour R suffisamment grand, (R =58 convient), il
existe une constante D = D(R) > 1, telle que pour toute boule B(E,r)
de (0X,d), on puisse trouver des ombres O(y,R) et O(y,, R)
centrées en £, vérifiant:

O(y1,R) C B(§,r) C O(y2, R)
et
D-1r(y;) <r < Dr(y1) .
Ainsi, les boules de (08X, d) ressemblent aux ombres.

Preuve de 1.6.2. Rappelons qu’il existe une constante C > 1 telle que
pour tout point £, ¢’ de 0.X on ait:

(1) C-'t-94<d(, )< Ct~? avec d=dx(x,(§8")).

D’autre part observons que tout triangle de X u 08X est 56-fin
(voir 1.4.1.b)).

Soit R > 58, £ un point de 8.X, B(E, r) une boule de 8.X centrée en &,
et v un rayon géodésique joignant x a . Prenons y, le point de y vérifiant:

| x — yo| = max{0, — log,Cr — 58 — 1}

et montrons que B(&,r) est contenue dans O(y,, R). Soit £’ un point
de B(&,r), le triangle (xEE’) étant 56-fin, on a:

d(y2, [x§") L (£€7) < 58
Or par P'inégalité triangulaire et (1):

d(y2,(£89) = d(x, (E€) — | x — ¥, ]|
> —log,Cr —|x — y,|
>58 +1

donc: d(y,, [x€")) < 58 < R et & appartient & O(y,, R).
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Prenons y, le point de y vérifiant:

|x—y1|= —logtg+R+106

(d’apres (1), r < C, donc —log,(r/C)+ R + 108 > 0) et montrons que
B(&,r) contient O(y,,R). Soit & un point de O(y,,R), Yy  un rayon
géodeésique joignant x a & passant par B(y;,R), P un point appartenant
aynB(,R)et Qun point de (') vérifiant:

|x - Q[ =d(x, (£&)) .

Considérons le quadrilatére (y;PEE’), en le subdivisant en deux triangles,
on voit qu’il est 108-fin, aussi: ‘

d(Q, [Pyl U [PE') U [y:€)) < 108 .
D’autre part:
d(x, [Py U [PE) U [118) 2 |x — 1| - R.
Donc:

d(x,(£¢)) =|x - Q|
> d(x, [Py] u [PE) U [¥8)) — d(Q, [Py\] U [PE’) U [¥E))

»
>|x—y|-R-108 = - log, —
C
alors d’apres (1), d(§,&’) < r et &’ appartient a B(E, r).
On a donc trouvé deux ombres centrées en & qui vérifient:
O(y1,R) CB(&,r) CO(2,R) .
Leurs rayons satisfont:
r(y;) =t R-108C-1r et r(y,) <t3*1Cr.
Posons D = max{tR+108C, ¢3*+1C}. On obtient:

D-r(y;) <r<Dr(y;). U

De maniére symétrique, on a aussi:

1.6.3. LEMME. Pour R suffisamment grand (R =58 convient),
il existe une constante E = E(R) > 1, telle que pour tout & € 80X et toute
ombre O(y,R) centrée en E, on puisse trouver des boules B(&,r;)
et B(,r,) de (0X,d) vérifiant:
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B(&,r)) C O(y,R) C B(§, 1)
avec
E-'ry<r(y) <Er .

Preuve de 1.6.3. Elle est semblable a la précédente, donnons-la
néanmoins. On reprend les notations de la preuve de 1.6.2.

Soit r; = C-1¢~5-1r(y), montrons que B(§,r;) est contenue dans
O(y, R). Soit &’ un point de B(§, r1). Le triangle (xEE') étant 56-fin, on a:

d(y, [x&") U (EE")) < 58.
D’autre part, d’aprés I’inégalité triangulaire, les inégalités (1) et le choix
de r;:
> d(x, (§89) — |x — ¥ |
> —log,d(§,&") — log,C + log.r(y)
>50+1

d(y,(§€")

donc d(y, [xE") < 58 < R et & appartient & O(y, R).
Soit r, = CtR+108 r(y). Montrons que B(§, r,) contient O(y, R). Soit &’
un point de O(y, R); comme dans la preuve de 1.6.2, on a:
d(x, (€)= |x—y|— R - 105.

Donc d’aprés (1) et le choix de r,:

d(E,8) < CtR+1%r(y) =r,

et £’ appartient a B(&, r,).
Posons E = max{Ct38+1, CtR+103} " on obtient

E-'r,<r(y)<Er.. [
D’aprés la propriété des quasi-rayons géodésiques dans un espace
hyperbolique, I’image d’une ombre se compare aisément a une ombre. Ainsi,

et en utilisant les lemmes 1.6.2 et 1.6.3, on obtient la généralisation suivante
d’un théoréme de Margulis.

1.6.4. THEOREME. Soit X et X' deux espaces hyperboliques.
Supposons leurs bords équipés de métriques visuelles.

a) Toute quasi-isométrie f de X dans X' s’étend en un plongement
quasi-conforme, bi-Holder, de 00X dans 0X’.

b) Si X et X' sont quasi-isométriques, leurs bords se correspondent par
un homéomorphisme quasi-conforme bi-Hdélder.
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Preuve de 1.6.4. 11 suffit de montrer a). Soit x une origine dans X,
prenons pour 6rigine de X’ le point f(x). Soit respectivement d et d’ des
métriques visuelles de parameétre (x, ¢) et (f(x),¢’) sur 89X et 3.X".

Par la propriété des quasi-rayons géodésiques (1.4.1.c)), f s’étend en une
application de 0.X dans d.X’, notée df. C’est un plongement bi-Holder a cause
des définitions des métriques visuelles et de la propriété des quasi-géodésiques.

Pour montrer que df est un plongement quasi-conforme, on utilise les
ombres:

Soit & un point de 8.X, y, et y; deux points dans cet ordre sur [x£),
O(y1,R) et O(y,,R) les ombres portées depuis x des boules B(y;, R)
et B(y,,R) de X. Par la propriété des quasi-rayons géodésiques, il
existe des constantes R; > 0 et R, > 0 qui ne dépendent que de R, des
constantes de quasi-isométrie de f et de I’hyperbolicité de X et de X”’; avec les
propriétés suivantes: Notons yi et y, les projections de f(y;) et de f(),)
sur [f(x)df(€)). Soit O(yi,Ry) et O(y5,R,) les ombres portées depuis
Jf(x) des boules B(y{, R;) et B(y;, R,) de X'; elles sont centrées en 0/ (§).
Alors si R a été choisi suffisamment grand:

O(»1,R1) Nndf(@X) CAf(O(y:,R))
C 3f(0(y2,R)) C O(y3, Ry) N df(BX) .

De plus le rapport des rayons des ombres O(yi, R;) et O(y5, R,) est borné
par une fonction du rapport des rayons de O(y;, R) et de O(y,, R) qui ne
dépend que des constantes de quasi-isométrie de f, de I’hyperbolicité de X
et de X', et des paramétres 7 et ¢’.

Alors les lemmes 1.6.2 et 1.6.3 montrent que 0f est quasi-conforme sur
son image. De facon analogue, 0f ~! est quasi-conforme de 9f(d.X) sur 9.X.
Ainsi 9f est un plongement quasi-conforme. [

1.6.4. Remarque. Deux métriques d, et d, sur un méme espace E sont
dites quasi-conformes si ’identité de (E,d;) sur (E,d,) est un homéo-
morphisme quasi-conforme. Clairement la composée de deux applications
quasi-conformes est quasi-conforme. Aussi, la relation: «d, et d, sont quasi-
conformes», est une relation d’équivalence sur I’ensemble des métriques de E.
La classe d’équivalence d’une métrique d de E est appelée structure quasi-
conforme de (E,d). (Voir [Pan] pour une définition plus générale). Le
théoréme 1.6.4.(b) indique que la structure quasi-conforme d’une métrique
visuelle sur 0.X, est un invariant de quasi-isométrie de X.
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