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70 M. BOURDON

1.4.1. Proposition

a) Soit x e X, et £, e dX. Il existe un rayon géodésique d'extrémités

x et E,. On le notera [x't). Deux rayons géodésiques de mêmes

extrémités sont à distance de Hausdorff inférieure à 28.

b) Soient £, et deux points distincts de bX. Il existe une géodésique
d'extrémités £, et On la notera (££')• Etewx géodésiques de mêmes

extrémités sont à distance de Hausdorff inférieure à 40.

c) (Propriétés des quasi-rayons géodésiques et des quasi-géodésiques). Il
existe une constante C ne dépendant que de 8, X, k, avec la propriété
suivante: tout (X, k)-quasi-rayon géodésique (resp. quasi-géodésique) de X,
est à distance de Hausdorff inférieure à C d'un rayon géodésique
(resp. géodésique) de X.

1.4.2. Remarque. Lorsque X est un CAT(- b2)-espace, deux points
de X u dX détermine un unique arc géodésique. C'est immédiat par comparaison

avec Hr(-&2).

1.4.3. Exemples

a) Le bord d'un arbre réel propre est totalement discontinu.

b) Soit X une variété riemannienne simplement connexe, de dimension finie,
à courbure inférieure à -b2. Etant donnée une origine x dans X, l'application

exponentielle de l'espace tangent en x, induit un homéomorphisme de

la sphère unité sur bX.

c) Soit X un CAT(- &2)-espace, et x une origine dans X. Notons S(x, R) la
sphère de centre x et de rayon R. Deux points de X déterminent un unique
segment géodésique, donc pour R ^ R', il existe une application naturelle
de S(x,R) dans S(x, i?')- On montre que 8X est homéomorphe à la limite
projective des S(x, R), lorsque R tend vers l'infini. Notons que le bord
d'un CAT(-£2)-espace est généralement compliqué. N. Benakli [Be]

a construit des exemples (polyèdres de Gromov), dont le bord est une courbe
de Menger ou de Sierpiiiski.

1.5. Métriques visuelles sur bX

De même qu'un changement conforme de métrique sur Hj, permet
d'identifier son bord à celui de la boule euclidienne de rayon un, on peut
modifier de manière «conforme» la métrique d'un espace ô-hyperbolique X,
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afin que X u dX soit le complété de X pour cette nouvelle métrique.

(Voir [G], [C-D-P], [C], pour plus de détails). Ainsi dXhérite d'une métrique

compatible avec sa topologie. Les métriques obtenues de cette manière ont la

propriété de visibilité, c'est-à-dire:

1.5.1. Définition. Soit a une origine dans X. Une métrique dQX

sur dX a la propriété de visibilité, si elle est reliée à celle de X de la façon

suivante: Il existe une constante C ^ 1 et un réel t > 1, tels que pour tous

éléments de 9X:

C-lt-d^dbX&,î')^Ct-d.
avec

d=dx(x ,(&')).
Une telle métrique est appelée métrique visuelle de paramètres (a, t).

L'énoncé précis est le suivant: ([G], §7.2, [C-D-P], chapitre 11):

1.5.2. Théorème (Gromov). Il existe un réel t0 > 1, ne dépendant

que de ô, tel que pour tout t appartenant à ]1,G[> le bord de X
admette une métrique visuelle de paramètres (x, t).

1.5.3. Remarques

a) Pour les CAT(-b2)-espaces, le résultat est plus fin: leur bord admet

une métrique visuelle de paramètre t, quel que soit t appartenant à ]l,eb\.
Une manière de le montrer est d'utiliser les idées de W. J. Floyd [F]. Nous en

proposerons une autre au paragraphe 2.5. Notons que eb est optimal car il
l'est sur Hr(-£2).
b) Deux métriques visuelles d et d'de paramètres respectifs (x, t) et (xr, t')
sont facilement comparables: Si t t', alors elles sont Lipschitz-équivalentes:
il existe une constante D ^ 1, telle que:

D~ld ^ d'< Dd

Sinon, elles sont Hôlder-équivalentes : il existe une constante D ^ 1 et un
réel a > 0, tels que:

D~lda ^d^ Dda

Ici a est égal à logC/logL
c) D'après b), toute isométrie de X est un homéomorphisme bi-Lipschitz
du bord de X muni d'une métrique visuelle.
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