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d) La fonction distance entre deux segments géodésiques est strictement

convexe.

Une autre propriété importante, est leur caractérisation locale suivante. Elle

permet de construire de nombreux exemples de CAT{-b2)-espace, dont les

fameux polyèdres hyperboliques de M. Gromov (voir [G-H] chapitre 10,

[Be], [Ha]).

1.3.2. Définition-théorème. L'espace A est dit à courbure
inférieure ou égale à — b2, si tout point de X admet un voisinage
satisfaisant CAT(- b2). Si X est géodésique simplement connexe à courbure

^ -b2, alors X est un CAT(-Z?2)-espace.

1.4. Bord d'un espace hyperbolique

Soit (X, dx) un espace ô-hyperbolique. Afin de lui appliquer le théorème

d'Ascoli, supposons-le propre (un espace métrique est propre, si ses boules

fermées sont compactes).
Définissons & l'ensemble des rayons géodésiques et munissons-le de la

relation d'équivalence suivante: Deux rayons sont équivalents s'ils sont à

distance de Hausdorff bornée.

L'ensemble des classes d'équivalence est le bord de X, on le note dX.
On définit une topologie sur X u 8A, de la manière suivante:

Soit x une origine dans X, et soit ^(x) l'ensemble des rayons et des

segments géodésiques:

y :/- A

où / est un intervalle du type [0, + oo[ ou [0, a], a e R +, et y vérifie y(0) x.
Si / [0, a], convenons de prolonger y à [0, + oo[, en posant y (/) y (a)
pour t supérieur à a. Munissons M(x) de la topologie de la convergence
uniforme sur les compacts. D'après le théorème d'Ascoli, ^(x) est compact
et l'application naturelle de ^(x) dans X u 8A est surjective. Equipé de la
topologie quotient, X u 8A est un compact, dans lequel l'espace métrique X
est ouvert et dense. Ainsi le compact 8A permet de compactifier A. On montre
que la topologie est indépendante de l'origine x.

Le théorème d'Ascoli et les propriétés du paragraphe 1.2 donnent:
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1.4.1. Proposition

a) Soit x e X, et £, e dX. Il existe un rayon géodésique d'extrémités

x et E,. On le notera [x't). Deux rayons géodésiques de mêmes

extrémités sont à distance de Hausdorff inférieure à 28.

b) Soient £, et deux points distincts de bX. Il existe une géodésique
d'extrémités £, et On la notera (££')• Etewx géodésiques de mêmes

extrémités sont à distance de Hausdorff inférieure à 40.

c) (Propriétés des quasi-rayons géodésiques et des quasi-géodésiques). Il
existe une constante C ne dépendant que de 8, X, k, avec la propriété
suivante: tout (X, k)-quasi-rayon géodésique (resp. quasi-géodésique) de X,
est à distance de Hausdorff inférieure à C d'un rayon géodésique
(resp. géodésique) de X.

1.4.2. Remarque. Lorsque X est un CAT(- b2)-espace, deux points
de X u dX détermine un unique arc géodésique. C'est immédiat par comparaison

avec Hr(-&2).

1.4.3. Exemples

a) Le bord d'un arbre réel propre est totalement discontinu.

b) Soit X une variété riemannienne simplement connexe, de dimension finie,
à courbure inférieure à -b2. Etant donnée une origine x dans X, l'application

exponentielle de l'espace tangent en x, induit un homéomorphisme de

la sphère unité sur bX.

c) Soit X un CAT(- &2)-espace, et x une origine dans X. Notons S(x, R) la
sphère de centre x et de rayon R. Deux points de X déterminent un unique
segment géodésique, donc pour R ^ R', il existe une application naturelle
de S(x,R) dans S(x, i?')- On montre que 8X est homéomorphe à la limite
projective des S(x, R), lorsque R tend vers l'infini. Notons que le bord
d'un CAT(-£2)-espace est généralement compliqué. N. Benakli [Be]

a construit des exemples (polyèdres de Gromov), dont le bord est une courbe
de Menger ou de Sierpiiiski.

1.5. Métriques visuelles sur bX

De même qu'un changement conforme de métrique sur Hj, permet
d'identifier son bord à celui de la boule euclidienne de rayon un, on peut
modifier de manière «conforme» la métrique d'un espace ô-hyperbolique X,
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