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68 M. BOURDON

a) Si Y est hyperbolique et s’il existe une quasi-isométrie de X dans Y,
alors X est hyperbolique.

b) Si X et Y sont quasi-isométriques, alors X est hyperbolique si et
seulement si 'Y [est.

1.2.5. COROLLAIRE (Invariance des quasi-convexes par quasi-isométrie).
Soient (X,dx) (Y,dy) deux espaces géodésiques et [ une quasi-
isométrie de X dans Y. Si Y est hyperbolique, ’'image par [ de
tout quasi-convexe de X est un quasi-convexe de Y.

1.3. CAT (— b?)-ESPACES

Nous décrivons une généralisation des exemples 1.2.2. Ces espaces seront
pour nous d’un intérét particulier.

Soit (X, dyx) un espace métrique géodésique, et soit Hx(—b?) ’espace
hyperbolique réel deux-dimensionnel, a courbure constante — b?2.

A tout triangle A = [xy] U [yz] u [zx] de X associons un triangle
A = [xylulrz]lulzx] de Hf{(—bz) dont les cOtés ont méme longueur
que ceux de A. Le triangle A est unique a isométrie pres. Il est appelé triangle
de comparaison associé a A. Soit:

A— A

s s
I’application naturelle dont la restriction a chacun des cotés de A est une
isométrie.

1.3.1. DEFINITION
a) On dit que A satisfait CAT (—b?) (comparaison Aleksandrov Theorem),
si quels que soient s, ¢ appartenant a A:
dX(S’ t) < dHZR(_.bZ) (E’ t—) .

b) X est un CAT (- b?)-espace si tout triangle de X satisfait CAT (—b?).

Les CAT (- b?)-espaces ont la plupart des propriétés des variétés rieman-
niennes simplement connexes a courbure < —b2. En voici quelques-unes,
immédiates a partir de la définition:

a) Deux points de X déterminent un unique segment géodésique.
b) X est (log 3/b)-hyperbolique.

¢) X est contractible.
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d) La fonction distance entre deux segments géodésiques est strictement
convexe.

Une autre propriété importante, est leur caractérisation locale suivante. Elle
permet de construire de nombreux exemples de CAT (- b?)-espace, dont les
fameux polyédres hyperboliques de M. Gromov (voir [G-H] chapitre 10,
[Be], [Ha]).

1.3.2. DEFINITION-THEOREME. L’espace X est dit a courbure infe-
rieure ou égale a —b2?, si tout point de X admet un voisinage satis-
faisant CAT(—5b2). Si X est géodésique simplement connexe a courbure
< — b2, alors X est un CAT (— b?)-espace.

1.4. BORD D’UN ESPACE HYPERBOLIQUE

Soit (X, dx) un espace 8-hyperbolique. Afin de lui appliquer le théoreme
d’Ascoli, supposons-le propre (un espace métrique est propre, si ses boules
fermées sont compactes).

Définissons Z I’ensemble des rayons géodésiques et munissons-le de la
relation d’équivalence suivante: Deux rayons sont équivalents s’ils sont a
distance de Hausdorff bornée.

L’ensemble des classes d’équivalence est le bord de X, on le note 9.X.

On définit une topologie sur X U 3.X, de la maniére suivante:

Soit x une origine dans X, et soit Z(x) I’ensemble des rayons et des
segments géodésiques:

v:I—-> X

ou [ est un intervalle du type [0, + o[ ou [0, a], a € R+, et v vérifie y(0) = x.
Si I = [0, a], convenons de prolonger y a [0, + o[, en posant y(z) = v(a)
pour ¢ supérieur & ¢. Munissons Z(x) de la topologie de la convergence
uniforme sur les compacts. D’aprés le théoréme d’Ascoli, % (x) est compact
et "application naturelle de Z2(x) dans X U 8.X est surjective. Equipé de la
topologie quotient, X U 8.X est un compact, dans lequel ’espace meétrique X
est ouvert et dense. Ainsi le compact 8 X permet de compactifier X. On montre
que la topologie est indépendante de I’origine x.
Le théoréeme d’Ascoli et les propriétés du paragraphe 1.2 donnent:
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