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Quasi-convexe: Supposons X géodésique. Un sous-ensemble Z de X est
C-quasi-convexe, si deux points quelconques de Z peuvent étre relies par
un segment géodésique contenu dans le C-voisinage de Z dans X. Il est
quasi-convexe, s’il est C-quasi-convexe pour un certain réel C.

1.2. ESPACES HYPERBOLIQUES GEODESIQUES

Désormais, (X, dx) est un espace métrique géodésique.

1.2.1. DEFINITION
a) Le triangle [xy] U [yz] U [zx] de X est &-fin si pour tout u appartenant
a [xy], on a:
dx(u, [yz] L [zx]) < 5.

b) X est &-hyperbolique si tout triangle de X est &-fin. Il est hyperbolique,
s’il est &-hyperbolique pour un certain réel 3.

Observons qu’un espace &-hyperbolique a la propriété suivante: deux
segments géodésiques de mémes extrémités, sont a distance de Hausdorff
inférieure a 8. Autrement dit, chacun est contenu dans le &-voisinage de
I’autre.

1.2.2. EXEMPLES (voir [C-D-P], chapitre 1, §4 et 5).

a) Un arbre métrique est O-hyperbolique.
b) L’espace hyperbolique réel n-dimensionnel Hg est log 3-hyperbolique.

¢) D’aprés le théoréme de comparaison d’Aleksandrov-Toponogov,
toute variété riemannienne simplement connexe a courbure < —b2, est
(log 3/ b)-hyperbolique.

Une premiere propriété fondamentale des espaces hyperboliques est:

1.2.3. THEOREME (Propriété des quasi-segments géodésiques). 1l existe
une constante C ne dépendant que de M\, k, 8, avec la propriété suivante:
tout (A, k)-quasi-segment géodésique d’un espace S-hyperbolique, est
a distance de Hausdorff inférieure @ C, de n’importe quel segment
géodésique joignant ses extrémités.

Dont on déduit immédiatement:

1.2.4.  COROLLAIRE (Invariance de I’hyperbolicité par quasi-isométrie).
Soient (X, dx), (Y,dy) deux espaces géodésiques.
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a) Si Y est hyperbolique et s’il existe une quasi-isométrie de X dans Y,
alors X est hyperbolique.

b) Si X et Y sont quasi-isométriques, alors X est hyperbolique si et
seulement si 'Y [est.

1.2.5. COROLLAIRE (Invariance des quasi-convexes par quasi-isométrie).
Soient (X,dx) (Y,dy) deux espaces géodésiques et [ une quasi-
isométrie de X dans Y. Si Y est hyperbolique, ’'image par [ de
tout quasi-convexe de X est un quasi-convexe de Y.

1.3. CAT (— b?)-ESPACES

Nous décrivons une généralisation des exemples 1.2.2. Ces espaces seront
pour nous d’un intérét particulier.

Soit (X, dyx) un espace métrique géodésique, et soit Hx(—b?) ’espace
hyperbolique réel deux-dimensionnel, a courbure constante — b?2.

A tout triangle A = [xy] U [yz] u [zx] de X associons un triangle
A = [xylulrz]lulzx] de Hf{(—bz) dont les cOtés ont méme longueur
que ceux de A. Le triangle A est unique a isométrie pres. Il est appelé triangle
de comparaison associé a A. Soit:

A— A

s s
I’application naturelle dont la restriction a chacun des cotés de A est une
isométrie.

1.3.1. DEFINITION
a) On dit que A satisfait CAT (—b?) (comparaison Aleksandrov Theorem),
si quels que soient s, ¢ appartenant a A:
dX(S’ t) < dHZR(_.bZ) (E’ t—) .

b) X est un CAT (- b?)-espace si tout triangle de X satisfait CAT (—b?).

Les CAT (- b?)-espaces ont la plupart des propriétés des variétés rieman-
niennes simplement connexes a courbure < —b2. En voici quelques-unes,
immédiates a partir de la définition:

a) Deux points de X déterminent un unique segment géodésique.
b) X est (log 3/b)-hyperbolique.

¢) X est contractible.
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