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de T dans dX et le flot géodésique sont intimement liés au groupe. En effet

si T agit comme précédemment sur deux CAT (-1)-espaces, alors les

ensembles limites associés (qui sont canoniquement homéomorphes à 6T) se

correspondent par un homéomorphisme Q, canonique, T-équivariant et quasi-

conforme. De même, d'après une construction de M. Gromov, les espaces du

flot géodésique se correspondent par une équivalence d'orbites (un
homéomorphisme envoyant orbites sur orbites sans préserver en général le

paramétrage). Nous montrons que l'homéomorphisme quasi-conforme Q est

conforme si et seulement si l'équivalence d'orbites de M. Gromov est réalisée

par une conjugaison des flots géodésiques (une équivalence d'orbites qui
préserve le paramétrage). Ainsi la structure conforme de l'ensemble limite
détermine le flot géodésique et inversement. La preuve de ce résultat consiste

en grande partie à adapter aux CAT(— 1)-espaces certaines idées développées

par Hopf, Patterson, Sullivan sur les variétés à courbure -1 ; en particulier
les mesures conformes sur l'ensemble limite, et les mesures induites sur le carré
de l'ensemble limite et sur l'espace du flot géodésique.

La première partie de cet article est plutôt destinée au lecteur peu familier
de la théorie de M. Gromov des espaces hyperboliques. On y rappelle
quelques notions et résultats fondamentaux concernant notamment: les

CAT(-b2)-espaces, le bord d'un espace hyperbolique et ses métriques
visuelles, les actions quasi-convexes d'un groupe hyperbolique et leurs
ensembles limites.

Dans la deuxième partie on construit la structure conforme du bord
d'un CAT( — 1)-espace. On définit le flot géodésique associé à une action
quasi-convexe sur un CAT (-1)-espace. Enfin on montre que la structure
conforme de l'ensemble limite caractérise le flot et inversement.

Je remercie Pierre Pansu qui a dirigé ma thèse que reprend en partie
cet article.

1. Préliminaires

On rappelle dans ce chapitre les notions d'espaces et de groupes
hyperboliques, qui nous seront utiles par la suite. Pour plus de détails, on pourra
se référer à [G], [G-H], [C-D-P], [C].

1.1. Généralités sur les espaces métriques

Sont rassemblées ici les définitions qui seront d'un usage constant.
Soient (X, dx), (Y,dy) deux espaces métriques. Afin d'alléger les

notations, la distance d(x,x') sera souvent notée \ x — x' \.
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Quasi-isométrie: Une application f\X~* Y est une (X, &)-quasi-isométrie,
si quels que soient les éléments x, x' de X:

\f(x) - /(*')
On dit qu'elle est une quasi-isométrie, si l'on ne tient pas à préciser les

constantes X et k. Remarquons qu'une quasi-isométrie n'est pas en général
continue.

Espaces quasi-isométriques: Les espaces métriques X et Y sont quasi-

isométriques, s'ils satisfont l'une des deux conditions équivalentes suivantes:

(i) Il existe des quasi-isométries f:X~* Y, g: X et un réel s ^ 0, tels

que f o g et g of soient s-proches de l'identité.

(ii) Il existe une quasi-isométrie f: X Y et un réel s ^ 0, tels que f(X)
soit 8-dense dans Y.

Rappelons qu'un sous-ensemble Z de Y est s-dense, si le s-voisinage
de Z dans Y est Y.

Géodésiques: Un segment géodésique (resp. un rayon géodésique),

(resp. une géodésique) de X, est une isométrie:

y:I~*X

où / est un intervalle de R, fermé borné, (resp. fermé semi-infini),
(resp. R).

Etant donné deux éléments x, x' de X, on notera [xxr] tout segment

géodésique:

y: la, b]^X\ avec y {a) x, y (b) x'.
D'autre part, on se permettra souvent de confondre un segment géodésique,

ou un rayon, ou une géodésique, avec son image.

Espaces géodésiques: L'espace X est géodésique, si deux éléments

quelconques de X peuvent être reliés par un segment géodésique.

Quasi-géodésiques: Un (X, k)-quasi-segment géodésique, (resp. rayon
géodésique), (resp. géodésique) de X, est une (X, k)-quasi-isométrie:

y:I-+X
où / est un intervalle de R, fermé borné, (resp. fermé semi-infini), (resp. R).
Si l'on ne tient pas à préciser les constantes X et k, on dira seulement

quasi-segment géodésique (resp. rayon), (resp. géodésique).
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Quasi-convexe: Supposons X géodésique. Un sous-ensemble Z de X est

C-quasi-convexe, si deux points quelconques de Z peuvent être reliés par

un segment géodésique contenu dans le C-voisinage de Z dans X. Il est

quasi-convexe, s'il est C-quasi-convexe pour un certain réel C.

1.2. Espaces hyperboliques géodésiques

Désormais, (X, dx) est un espace métrique géodésique.

1.2.1. Définition
a) Le triangle [xy] u [yz] u [zx] de X est ô-fin si pour tout u appartenant
à [xy], on a:

dx(u, [yz] u [zx]) ^ 6

b) X est ô-hyperbolique si tout triangle de X est ô-fin. Il est hyperbolique,
s'il est ô-hyperbolique pour un certain réel 5.

Observons qu'un espace ô-hyperbolique a la propriété suivante: deux

segments géodésiques de mêmes extrémités, sont à distance de Hausdorff
inférieure à ô. Autrement dit, chacun est contenu dans le ô-voisinage de

l'autre.

1.2.2. Exemples (voir [C-D-P], chapitre 1, §4 et 5).

a) Un arbre métrique est O-hyperbolique.

b) L'espace hyperbolique réel «-dimensionnel H£ est log 3-hyperbolique.

c) D'après le théorème de comparaison d'Aleksandrov-Toponogov,
toute variété riemannienne simplement connexe à courbure ^ - b2, est

(log 3/b)-hyperbolique.

Une première propriété fondamentale des espaces hyperboliques est:

1.2.3. Théorème (Propriété des quasi-segments géodésiques). Il existe
une constante C ne dépendant que de X, k, ô, avec la propriété suivante:
tout (k, k)-quasi-segment géodésique d'un espace ô-hyperbolique, est
à distance de Hausdorff inférieure à C, de n'importe quel segment
géodésique joignant ses extrémités.

Dont on déduit immédiatement:

1.2.4. Corollaire (Invariance de Thyperbolicité par quasi-isométrie).
Soient (X, dx), (Y, dY) deux espaces géodésiques.
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