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de I' dans 8.X et le flot géodésique sont intimement liés au groupe. En effet
si T' agit comme précédemment sur deux CAT(—1)-espaces, alors les
ensembles limites associés (qui sont canoniquement homéomorphes a dI') se
correspondent par un homéomorphisme Q, canonique, I'-équivariant et quasi-
conforme. De méme, d’aprés une construction de M. Gromov, les espaces du
flot géodésique se correspondent par une équivalence d’orbites (un homeo-
morphisme envoyant orbites sur orbites sans préserver en général le
paramétrage). Nous montrons que ’homéomorphisme quasi-conforme € est
conforme si et seulement si I’équivalence d’orbites de M. Gromov est réalisée
par une conjugaison des flots géodésiques (une équivalence d’orbites qui
préserve le paramétrage). Ainsi la structure conforme de I’ensemble limite
détermine le flot géodésique et inversement. La preuve de ce résultat consiste
en grande partie a adapter aux CAT (— 1)-espaces certaines idées développées
par Hopf, Patterson, Sullivan sur les variétés a courbure —1; en particulier
les mesures conformes sur I’ensemble limite, et les mesures induites sur le carré
de I’ensemble limite et sur I’espace du flot géodésique.

La premicre partie de cet article est plutot destinée au lecteur peu familier
de la théorie de M. Gromov des espaces hyperboliques. On y rappelle
quelques notions et résultats fondamentaux concernant notamment: les
CAT (—b?)-espaces, le bord d’un espace hyperbolique et ses métriques
visuelles, les actions quasi-convexes d’un groupe hyperbolique et leurs
ensembles limites.

Dans la deuxiéme partie on construit la structure conforme du bord
d’un CAT (- 1)-espace. On définit le flot géodésique associé a une action
quasi-convexe sur un CAT (—1)-espace. Enfin on montre que la structure
conforme de ’ensemble limite caractérise le flot et inversement.

Je remercie Pierre Pansu qui a dirigé ma thése que reprend en partie
cet article.

1. PRELIMINAIRES

On rappelle dans ce chapitre les notions d’espaces et de groupes hyper-
boliques, qui nous seront utiles par la suite. Pour plus de détails, on pourra
se référer a [G], [G-H], [C-D-P], [C].

1.1. GENERALITES SUR LES ESPACES METRIQUES

Sont rassemblées ici les définitions qui seront d’un usage constant.

Soient (X, dx), (Y,dy) deux espaces métriques. Afin d’alléger les
notations, la distance d(x, x") sera souvent notée | x — x’ .
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Quasi-isométrie: Une application f: X — Y est une (A, k)-quasi-isométrie,
si quels que soient les éléments x, x’ de X:

M x = x|x = k< f(X) = f(x)

On dit qu’elle est une quasi-isométrie, si 1’on ne tient pas a préciser les
constantes A et k. Remarquons qu’une quasi-isométrie n’est pas en général
continue.

y<Mx—-x"|x+ k.

Espaces quasi-isométriques: Les espaces métriques X et Y sont quasi-
isométriques, s’ils satisfont ’une des deux conditions équivalentes suivantes:

(1) Il existe des quasi-isométries f: X = Y, g: Y = X et un réel € > 0, tels
que fo g et g o f soient g-proches de 1’identité.

(i) Il existe une quasi-isométrie f: X — Y et un réel € > 0, tels que f(X)
soit e-dense dans Y.

Rappelons qu’un sous-ensemble Z de Y est e-dense, si le e€-voisinage
de Z dans Y est Y.

Géodeésiques: Un segment géodésique (resp. un rayon géodésique),
(resp. une géodésique) de X, est une isométrie:

v:I—= X

ou I est un intervalle de R, fermé borné, (resp. fermé semi-infini),
(resp. R).

Etant donné deux éléments x, x’ de X, on notera [xx'] tout segment
géodésique:

v:la,b] > X; avec vy(a)=x, v(b)=x".

D’autre part, on se permettra souvent de confondre un segment géodésique,
ou un rayon, ou une géodésique, avec son image.

Espaces géodésiques: L’espace X est géodésique, si deux éléments
quelconques de X peuvent étre reliés par un segment géodésique.

Quasi-géodésiques: Un (A, k)-quasi-segment géodésique, (resp. rayon
géodésique), (resp. géodésique) de X, est une (A, k)-quasi-isométrie:

vi:I—- X

ou / est un intervalle de R, fermé borné, (resp. fermé semi-infini), (resp. R).
Si ’on ne tient pas a préciser les constantes A et k, on dira seulement
quasi-segment géodésique (resp. rayon), (resp. géodésique).
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Quasi-convexe: Supposons X géodésique. Un sous-ensemble Z de X est
C-quasi-convexe, si deux points quelconques de Z peuvent étre relies par
un segment géodésique contenu dans le C-voisinage de Z dans X. Il est
quasi-convexe, s’il est C-quasi-convexe pour un certain réel C.

1.2. ESPACES HYPERBOLIQUES GEODESIQUES

Désormais, (X, dx) est un espace métrique géodésique.

1.2.1. DEFINITION
a) Le triangle [xy] U [yz] U [zx] de X est &-fin si pour tout u appartenant
a [xy], on a:
dx(u, [yz] L [zx]) < 5.

b) X est &-hyperbolique si tout triangle de X est &-fin. Il est hyperbolique,
s’il est &-hyperbolique pour un certain réel 3.

Observons qu’un espace &-hyperbolique a la propriété suivante: deux
segments géodésiques de mémes extrémités, sont a distance de Hausdorff
inférieure a 8. Autrement dit, chacun est contenu dans le &-voisinage de
I’autre.

1.2.2. EXEMPLES (voir [C-D-P], chapitre 1, §4 et 5).

a) Un arbre métrique est O-hyperbolique.
b) L’espace hyperbolique réel n-dimensionnel Hg est log 3-hyperbolique.

¢) D’aprés le théoréme de comparaison d’Aleksandrov-Toponogov,
toute variété riemannienne simplement connexe a courbure < —b2, est
(log 3/ b)-hyperbolique.

Une premiere propriété fondamentale des espaces hyperboliques est:

1.2.3. THEOREME (Propriété des quasi-segments géodésiques). 1l existe
une constante C ne dépendant que de M\, k, 8, avec la propriété suivante:
tout (A, k)-quasi-segment géodésique d’un espace S-hyperbolique, est
a distance de Hausdorff inférieure @ C, de n’importe quel segment
géodésique joignant ses extrémités.

Dont on déduit immédiatement:

1.2.4.  COROLLAIRE (Invariance de I’hyperbolicité par quasi-isométrie).
Soient (X, dx), (Y,dy) deux espaces géodésiques.
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