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de I' dans 8.X et le flot géodésique sont intimement liés au groupe. En effet
si T' agit comme précédemment sur deux CAT(—1)-espaces, alors les
ensembles limites associés (qui sont canoniquement homéomorphes a dI') se
correspondent par un homéomorphisme Q, canonique, I'-équivariant et quasi-
conforme. De méme, d’aprés une construction de M. Gromov, les espaces du
flot géodésique se correspondent par une équivalence d’orbites (un homeo-
morphisme envoyant orbites sur orbites sans préserver en général le
paramétrage). Nous montrons que ’homéomorphisme quasi-conforme € est
conforme si et seulement si I’équivalence d’orbites de M. Gromov est réalisée
par une conjugaison des flots géodésiques (une équivalence d’orbites qui
préserve le paramétrage). Ainsi la structure conforme de I’ensemble limite
détermine le flot géodésique et inversement. La preuve de ce résultat consiste
en grande partie a adapter aux CAT (— 1)-espaces certaines idées développées
par Hopf, Patterson, Sullivan sur les variétés a courbure —1; en particulier
les mesures conformes sur I’ensemble limite, et les mesures induites sur le carré
de I’ensemble limite et sur I’espace du flot géodésique.

La premicre partie de cet article est plutot destinée au lecteur peu familier
de la théorie de M. Gromov des espaces hyperboliques. On y rappelle
quelques notions et résultats fondamentaux concernant notamment: les
CAT (—b?)-espaces, le bord d’un espace hyperbolique et ses métriques
visuelles, les actions quasi-convexes d’un groupe hyperbolique et leurs
ensembles limites.

Dans la deuxiéme partie on construit la structure conforme du bord
d’un CAT (- 1)-espace. On définit le flot géodésique associé a une action
quasi-convexe sur un CAT (—1)-espace. Enfin on montre que la structure
conforme de ’ensemble limite caractérise le flot et inversement.

Je remercie Pierre Pansu qui a dirigé ma thése que reprend en partie
cet article.

1. PRELIMINAIRES

On rappelle dans ce chapitre les notions d’espaces et de groupes hyper-
boliques, qui nous seront utiles par la suite. Pour plus de détails, on pourra
se référer a [G], [G-H], [C-D-P], [C].

1.1. GENERALITES SUR LES ESPACES METRIQUES

Sont rassemblées ici les définitions qui seront d’un usage constant.

Soient (X, dx), (Y,dy) deux espaces métriques. Afin d’alléger les
notations, la distance d(x, x") sera souvent notée | x — x’ .
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Quasi-isométrie: Une application f: X — Y est une (A, k)-quasi-isométrie,
si quels que soient les éléments x, x’ de X:

M x = x|x = k< f(X) = f(x)

On dit qu’elle est une quasi-isométrie, si 1’on ne tient pas a préciser les
constantes A et k. Remarquons qu’une quasi-isométrie n’est pas en général
continue.

y<Mx—-x"|x+ k.

Espaces quasi-isométriques: Les espaces métriques X et Y sont quasi-
isométriques, s’ils satisfont ’une des deux conditions équivalentes suivantes:

(1) Il existe des quasi-isométries f: X = Y, g: Y = X et un réel € > 0, tels
que fo g et g o f soient g-proches de 1’identité.

(i) Il existe une quasi-isométrie f: X — Y et un réel € > 0, tels que f(X)
soit e-dense dans Y.

Rappelons qu’un sous-ensemble Z de Y est e-dense, si le e€-voisinage
de Z dans Y est Y.

Géodeésiques: Un segment géodésique (resp. un rayon géodésique),
(resp. une géodésique) de X, est une isométrie:

v:I—= X

ou I est un intervalle de R, fermé borné, (resp. fermé semi-infini),
(resp. R).

Etant donné deux éléments x, x’ de X, on notera [xx'] tout segment
géodésique:

v:la,b] > X; avec vy(a)=x, v(b)=x".

D’autre part, on se permettra souvent de confondre un segment géodésique,
ou un rayon, ou une géodésique, avec son image.

Espaces géodésiques: L’espace X est géodésique, si deux éléments
quelconques de X peuvent étre reliés par un segment géodésique.

Quasi-géodésiques: Un (A, k)-quasi-segment géodésique, (resp. rayon
géodésique), (resp. géodésique) de X, est une (A, k)-quasi-isométrie:

vi:I—- X

ou / est un intervalle de R, fermé borné, (resp. fermé semi-infini), (resp. R).
Si ’on ne tient pas a préciser les constantes A et k, on dira seulement
quasi-segment géodésique (resp. rayon), (resp. géodésique).
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Quasi-convexe: Supposons X géodésique. Un sous-ensemble Z de X est
C-quasi-convexe, si deux points quelconques de Z peuvent étre relies par
un segment géodésique contenu dans le C-voisinage de Z dans X. Il est
quasi-convexe, s’il est C-quasi-convexe pour un certain réel C.

1.2. ESPACES HYPERBOLIQUES GEODESIQUES

Désormais, (X, dx) est un espace métrique géodésique.

1.2.1. DEFINITION
a) Le triangle [xy] U [yz] U [zx] de X est &-fin si pour tout u appartenant
a [xy], on a:
dx(u, [yz] L [zx]) < 5.

b) X est &-hyperbolique si tout triangle de X est &-fin. Il est hyperbolique,
s’il est &-hyperbolique pour un certain réel 3.

Observons qu’un espace &-hyperbolique a la propriété suivante: deux
segments géodésiques de mémes extrémités, sont a distance de Hausdorff
inférieure a 8. Autrement dit, chacun est contenu dans le &-voisinage de
I’autre.

1.2.2. EXEMPLES (voir [C-D-P], chapitre 1, §4 et 5).

a) Un arbre métrique est O-hyperbolique.
b) L’espace hyperbolique réel n-dimensionnel Hg est log 3-hyperbolique.

¢) D’aprés le théoréme de comparaison d’Aleksandrov-Toponogov,
toute variété riemannienne simplement connexe a courbure < —b2, est
(log 3/ b)-hyperbolique.

Une premiere propriété fondamentale des espaces hyperboliques est:

1.2.3. THEOREME (Propriété des quasi-segments géodésiques). 1l existe
une constante C ne dépendant que de M\, k, 8, avec la propriété suivante:
tout (A, k)-quasi-segment géodésique d’un espace S-hyperbolique, est
a distance de Hausdorff inférieure @ C, de n’importe quel segment
géodésique joignant ses extrémités.

Dont on déduit immédiatement:

1.2.4.  COROLLAIRE (Invariance de I’hyperbolicité par quasi-isométrie).
Soient (X, dx), (Y,dy) deux espaces géodésiques.
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a) Si Y est hyperbolique et s’il existe une quasi-isométrie de X dans Y,
alors X est hyperbolique.

b) Si X et Y sont quasi-isométriques, alors X est hyperbolique si et
seulement si 'Y [est.

1.2.5. COROLLAIRE (Invariance des quasi-convexes par quasi-isométrie).
Soient (X,dx) (Y,dy) deux espaces géodésiques et [ une quasi-
isométrie de X dans Y. Si Y est hyperbolique, ’'image par [ de
tout quasi-convexe de X est un quasi-convexe de Y.

1.3. CAT (— b?)-ESPACES

Nous décrivons une généralisation des exemples 1.2.2. Ces espaces seront
pour nous d’un intérét particulier.

Soit (X, dyx) un espace métrique géodésique, et soit Hx(—b?) ’espace
hyperbolique réel deux-dimensionnel, a courbure constante — b?2.

A tout triangle A = [xy] U [yz] u [zx] de X associons un triangle
A = [xylulrz]lulzx] de Hf{(—bz) dont les cOtés ont méme longueur
que ceux de A. Le triangle A est unique a isométrie pres. Il est appelé triangle
de comparaison associé a A. Soit:

A— A

s s
I’application naturelle dont la restriction a chacun des cotés de A est une
isométrie.

1.3.1. DEFINITION
a) On dit que A satisfait CAT (—b?) (comparaison Aleksandrov Theorem),
si quels que soient s, ¢ appartenant a A:
dX(S’ t) < dHZR(_.bZ) (E’ t—) .

b) X est un CAT (- b?)-espace si tout triangle de X satisfait CAT (—b?).

Les CAT (- b?)-espaces ont la plupart des propriétés des variétés rieman-
niennes simplement connexes a courbure < —b2. En voici quelques-unes,
immédiates a partir de la définition:

a) Deux points de X déterminent un unique segment géodésique.
b) X est (log 3/b)-hyperbolique.

¢) X est contractible.
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d) La fonction distance entre deux segments géodésiques est strictement
convexe.

Une autre propriété importante, est leur caractérisation locale suivante. Elle
permet de construire de nombreux exemples de CAT (- b?)-espace, dont les
fameux polyédres hyperboliques de M. Gromov (voir [G-H] chapitre 10,
[Be], [Ha]).

1.3.2. DEFINITION-THEOREME. L’espace X est dit a courbure infe-
rieure ou égale a —b2?, si tout point de X admet un voisinage satis-
faisant CAT(—5b2). Si X est géodésique simplement connexe a courbure
< — b2, alors X est un CAT (— b?)-espace.

1.4. BORD D’UN ESPACE HYPERBOLIQUE

Soit (X, dx) un espace 8-hyperbolique. Afin de lui appliquer le théoreme
d’Ascoli, supposons-le propre (un espace métrique est propre, si ses boules
fermées sont compactes).

Définissons Z I’ensemble des rayons géodésiques et munissons-le de la
relation d’équivalence suivante: Deux rayons sont équivalents s’ils sont a
distance de Hausdorff bornée.

L’ensemble des classes d’équivalence est le bord de X, on le note 9.X.

On définit une topologie sur X U 3.X, de la maniére suivante:

Soit x une origine dans X, et soit Z(x) I’ensemble des rayons et des
segments géodésiques:

v:I—-> X

ou [ est un intervalle du type [0, + o[ ou [0, a], a € R+, et v vérifie y(0) = x.
Si I = [0, a], convenons de prolonger y a [0, + o[, en posant y(z) = v(a)
pour ¢ supérieur & ¢. Munissons Z(x) de la topologie de la convergence
uniforme sur les compacts. D’aprés le théoréme d’Ascoli, % (x) est compact
et "application naturelle de Z2(x) dans X U 8.X est surjective. Equipé de la
topologie quotient, X U 8.X est un compact, dans lequel ’espace meétrique X
est ouvert et dense. Ainsi le compact 8 X permet de compactifier X. On montre
que la topologie est indépendante de I’origine x.
Le théoréeme d’Ascoli et les propriétés du paragraphe 1.2 donnent:
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1.4.1. PROPOSITION

a) Soit xeX, et EedX. Il existe un rayon géodésique d’extré-
mités x et &. On le notera [x&). Deux rayons géodésiques de mémes
extrémités sont a distance de Hausdorff inférieure a 28.

b) Soient & et &' deux points distincts de 8X. Il existe une géodésique
d’extrémités & et &’. On la notera (§£E'). Deux géodésiques de mémes
extrémités sont a distance de Hausdorff inférieure a 48.

c) (Propriétés des quasi-rayons géodésiques et des quasi-géodésiques). 1l
existe une constante C ne dépendant que de &,\, k, avec la propriété
suivante: tout (A, k)-quasi-rayon géodésique (resp. quasi-géodésique) de X,
est a distance de Hausdorff inférieure a C d’un rayon géodésique
(resp. géodésique) de X.

1.4.2. Remarque. Lorsque X est un CAT (—b?)-espace, deux points
de X U 0X détermine un unique arc géodésique. C’est immédiat par compa-
raison avec H(—b2).

1.4.3. EXEMPLES
a) Le bord d’un arbre réel propre est totalement discontinu.

b) Soit X une variété riemannienne simplement connexe, de dimension finie,
a courbure inférieure & — b?. Etant donnée une origine x dans X, I’appli-
cation exponentielle de I’espace tangent en x, induit un homéomorphisme de
la sphere unité sur 90.X.

¢) Soit X un CAT (— b?)-espace, et x une origine dans X. Notons S(x, R) la
spheére de centre x et de rayon R. Deux points de X déterminent un unique
segment géodésique, donc pour R > R’, il existe une application naturelle
de S(x, R) dans S(x, R’). On montre que 8.X est homéomorphe a la limite
projective des S(x, R), lorsque R tend vers l’'infini. Notons que le bord
d’un CAT(—b?)-espace est généralement compliqué. N. Benakli [Be]
a construit des exemples (polyedres de Gromov), dont le bord est une courbe
de Menger ou de Sierpinski.

1.5. METRIQUES VISUELLES SUR 0.X

De méme qu’un changement conforme de métrique sur Hg, permet
d’identifier son bord a celui de la boule euclidienne de rayon un, on peut
modifier de maniére «conforme» la métrique d’un espace 8-hyperbolique X,
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afin que X u 80X soit le complété de X pour cette nouvelle métrique.
(Voir [G], [C-D-P], [C], pour plus de détails). Ainsi d.X hérite d’une métrique
compatible avec sa topologie. Les métriques obtenues de cette maniére ont la
propriété de visibilité, c’est-a-dire:

1.5.1. DEFINITION. Soit x une origine dans X. Une métrique dpx
sur 8.X a la propriété de visibilité, si elle est relice a celle de X de la facon
suivante: Il existe une constante C > 1 et un réel # > 1, tels que pour tous
éléments &, £’ de 0.X:

C1t-4< dox(§,8) < Ct™7.
avec

d=dx(x,(88") .

Une telle métrique est appelée métrique visuelle de parametres (x, 7).

L’énoncé précis est le suivant: ([G], §7.2, [C-D-P], chapitre 11):

1.5.2. THEOREME (Gromov). Il existe un réel ty,> 1, ne dépendant
que de &, tel que pour tout t appartenant a 11,t[, le bord de X
admette une métrique visuelle de parametres (x,t).

1.5.3. Remarques

a) Pour les CAT (—b?)-espaces, le résultat est plus fin: leur bord admet
une métrique visuelle de parameétre ¢, quel que soit ¢ appartenant a ]1, e?].
Une maniére de le montrer est d’utiliser les idées de W.J. Floyd [F]. Nous en

proposerons une autre au paragraphe 2.5. Notons que e? est optimal car il
Iest sur Hg(—b2).

b) Deux métriques visuelles d et d’ de paramétres respectifs (x, ¢) et (x’, ")
sont facilement comparables: Si ¢ = ¢, alors elles sont Lipschitz-équivalentes:
il existe une constante D > 1, telle que:

D-'d<d <Dd.

Sinon, elles sont Holder-équivalentes: il existe une constante D > 1 et un
réel a > 0, tels que:

D-1de < d’ < Dde.
Ici a est égal a logt’/logt.

c) D’aprés b), toute isométrie de X est un homéomorphisme bi-Lipschitz
du bord de X muni d’une métrique visuelle.
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1.6. ACTION AU BORD DES QUASI-ISOMETRIES

Commencons par rappeler la définition d’application quasi-conforme.
Un k-anneau, k > 1, d’un espace métrique (E, d), est un couple (B;, B,)
de deux boules concentriques, dont les rayons r; et r, vérifient la relation:

r2=kr1. /|,

Une application:
fi(E, d)—(E',d")

est quasi-conforme (au sens des anneaux), s’il existe une fonction y de [1, + oo
dans lui-méme, telle que I’image par f de tout k-anneau est contenue dans
un y(k)-anneau de (E’,d’). Autrement dit, si (B;,B;) est un k-anneau
de (£, d), alors il existe un y(k)-anneau (B, B;) de (E’,d’), tel que:

By C f(B1) C f(B2) C B;.

Notons en particulier que I’image d’une boule de (E, d) est contenue dans
un y(1)-anneau de (E’, d’).

Un homéomorphisme f est quasi-conforme si f et f~-! sont quasi-
conformes. De méme, un plongement est quasi-conforme, s’il est un
homéomorphisme quasi-conforme sur son image.

Afin de décrire les boules, et par suite les anneaux d’une métrique visuelle
sur le bord d’un espace &-hyperbolique, rappelons la notion classique
d’ombre:

1.6.1. DEFINITION (Margulis). Soit x une origine dans X. L’ombre
portée a partir de x, de la boule B(y, R) de X, est le sous-ensemble de 0.X

§ }0(«‘:’ R)
X (%

J

FIGURE 1 a—X
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noté O(y, R), des extrémités des rayons géodésiques issus de x passant par
B(y, R). On dit que O(y, R) est centrée en &, si y appartient a un rayon
géodésique [x&). (Voir figure 1).

Etant donnée une métrique visuelle d de paramétres (x,?) sur 90X, a
I’ombre O(y, R) attachons le rayon:

r(y) = t=lx=»l,
La propriété de visibilité donne alors:

1.6.2. LEMME. Pour R suffisamment grand, (R =58 convient), il
existe une constante D = D(R) > 1, telle que pour toute boule B(E,r)
de (0X,d), on puisse trouver des ombres O(y,R) et O(y,, R)
centrées en £, vérifiant:

O(y1,R) C B(§,r) C O(y2, R)
et
D-1r(y;) <r < Dr(y1) .
Ainsi, les boules de (08X, d) ressemblent aux ombres.

Preuve de 1.6.2. Rappelons qu’il existe une constante C > 1 telle que
pour tout point £, ¢’ de 0.X on ait:

(1) C-'t-94<d(, )< Ct~? avec d=dx(x,(§8")).

D’autre part observons que tout triangle de X u 08X est 56-fin
(voir 1.4.1.b)).

Soit R > 58, £ un point de 8.X, B(E, r) une boule de 8.X centrée en &,
et v un rayon géodésique joignant x a . Prenons y, le point de y vérifiant:

| x — yo| = max{0, — log,Cr — 58 — 1}

et montrons que B(&,r) est contenue dans O(y,, R). Soit £’ un point
de B(&,r), le triangle (xEE’) étant 56-fin, on a:

d(y2, [x§") L (£€7) < 58
Or par P'inégalité triangulaire et (1):

d(y2,(£89) = d(x, (E€) — | x — ¥, ]|
> —log,Cr —|x — y,|
>58 +1

donc: d(y,, [x€")) < 58 < R et & appartient & O(y,, R).
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Prenons y, le point de y vérifiant:

|x—y1|= —logtg+R+106

(d’apres (1), r < C, donc —log,(r/C)+ R + 108 > 0) et montrons que
B(&,r) contient O(y,,R). Soit & un point de O(y,,R), Yy  un rayon
géodeésique joignant x a & passant par B(y;,R), P un point appartenant
aynB(,R)et Qun point de (') vérifiant:

|x - Q[ =d(x, (£&)) .

Considérons le quadrilatére (y;PEE’), en le subdivisant en deux triangles,
on voit qu’il est 108-fin, aussi: ‘

d(Q, [Pyl U [PE') U [y:€)) < 108 .
D’autre part:
d(x, [Py U [PE) U [118) 2 |x — 1| - R.
Donc:

d(x,(£¢)) =|x - Q|
> d(x, [Py] u [PE) U [¥8)) — d(Q, [Py\] U [PE’) U [¥E))

»
>|x—y|-R-108 = - log, —
C
alors d’apres (1), d(§,&’) < r et &’ appartient a B(E, r).
On a donc trouvé deux ombres centrées en & qui vérifient:
O(y1,R) CB(&,r) CO(2,R) .
Leurs rayons satisfont:
r(y;) =t R-108C-1r et r(y,) <t3*1Cr.
Posons D = max{tR+108C, ¢3*+1C}. On obtient:

D-r(y;) <r<Dr(y;). U

De maniére symétrique, on a aussi:

1.6.3. LEMME. Pour R suffisamment grand (R =58 convient),
il existe une constante E = E(R) > 1, telle que pour tout & € 80X et toute
ombre O(y,R) centrée en E, on puisse trouver des boules B(&,r;)
et B(,r,) de (0X,d) vérifiant:
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B(&,r)) C O(y,R) C B(§, 1)
avec
E-'ry<r(y) <Er .

Preuve de 1.6.3. Elle est semblable a la précédente, donnons-la
néanmoins. On reprend les notations de la preuve de 1.6.2.

Soit r; = C-1¢~5-1r(y), montrons que B(§,r;) est contenue dans
O(y, R). Soit &’ un point de B(§, r1). Le triangle (xEE') étant 56-fin, on a:

d(y, [x&") U (EE")) < 58.
D’autre part, d’aprés I’inégalité triangulaire, les inégalités (1) et le choix
de r;:
> d(x, (§89) — |x — ¥ |
> —log,d(§,&") — log,C + log.r(y)
>50+1

d(y,(§€")

donc d(y, [xE") < 58 < R et & appartient & O(y, R).
Soit r, = CtR+108 r(y). Montrons que B(§, r,) contient O(y, R). Soit &’
un point de O(y, R); comme dans la preuve de 1.6.2, on a:
d(x, (€)= |x—y|— R - 105.

Donc d’aprés (1) et le choix de r,:

d(E,8) < CtR+1%r(y) =r,

et £’ appartient a B(&, r,).
Posons E = max{Ct38+1, CtR+103} " on obtient

E-'r,<r(y)<Er.. [
D’aprés la propriété des quasi-rayons géodésiques dans un espace
hyperbolique, I’image d’une ombre se compare aisément a une ombre. Ainsi,

et en utilisant les lemmes 1.6.2 et 1.6.3, on obtient la généralisation suivante
d’un théoréme de Margulis.

1.6.4. THEOREME. Soit X et X' deux espaces hyperboliques.
Supposons leurs bords équipés de métriques visuelles.

a) Toute quasi-isométrie f de X dans X' s’étend en un plongement
quasi-conforme, bi-Holder, de 00X dans 0X’.

b) Si X et X' sont quasi-isométriques, leurs bords se correspondent par
un homéomorphisme quasi-conforme bi-Hdélder.
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Preuve de 1.6.4. 11 suffit de montrer a). Soit x une origine dans X,
prenons pour 6rigine de X’ le point f(x). Soit respectivement d et d’ des
métriques visuelles de parameétre (x, ¢) et (f(x),¢’) sur 89X et 3.X".

Par la propriété des quasi-rayons géodésiques (1.4.1.c)), f s’étend en une
application de 0.X dans d.X’, notée df. C’est un plongement bi-Holder a cause
des définitions des métriques visuelles et de la propriété des quasi-géodésiques.

Pour montrer que df est un plongement quasi-conforme, on utilise les
ombres:

Soit & un point de 8.X, y, et y; deux points dans cet ordre sur [x£),
O(y1,R) et O(y,,R) les ombres portées depuis x des boules B(y;, R)
et B(y,,R) de X. Par la propriété des quasi-rayons géodésiques, il
existe des constantes R; > 0 et R, > 0 qui ne dépendent que de R, des
constantes de quasi-isométrie de f et de I’hyperbolicité de X et de X”’; avec les
propriétés suivantes: Notons yi et y, les projections de f(y;) et de f(),)
sur [f(x)df(€)). Soit O(yi,Ry) et O(y5,R,) les ombres portées depuis
Jf(x) des boules B(y{, R;) et B(y;, R,) de X'; elles sont centrées en 0/ (§).
Alors si R a été choisi suffisamment grand:

O(»1,R1) Nndf(@X) CAf(O(y:,R))
C 3f(0(y2,R)) C O(y3, Ry) N df(BX) .

De plus le rapport des rayons des ombres O(yi, R;) et O(y5, R,) est borné
par une fonction du rapport des rayons de O(y;, R) et de O(y,, R) qui ne
dépend que des constantes de quasi-isométrie de f, de I’hyperbolicité de X
et de X', et des paramétres 7 et ¢’.

Alors les lemmes 1.6.2 et 1.6.3 montrent que 0f est quasi-conforme sur
son image. De facon analogue, 0f ~! est quasi-conforme de 9f(d.X) sur 9.X.
Ainsi 9f est un plongement quasi-conforme. [

1.6.4. Remarque. Deux métriques d, et d, sur un méme espace E sont
dites quasi-conformes si ’identité de (E,d;) sur (E,d,) est un homéo-
morphisme quasi-conforme. Clairement la composée de deux applications
quasi-conformes est quasi-conforme. Aussi, la relation: «d, et d, sont quasi-
conformes», est une relation d’équivalence sur I’ensemble des métriques de E.
La classe d’équivalence d’une métrique d de E est appelée structure quasi-
conforme de (E,d). (Voir [Pan] pour une définition plus générale). Le
théoréme 1.6.4.(b) indique que la structure quasi-conforme d’une métrique
visuelle sur 0.X, est un invariant de quasi-isométrie de X.
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1.7. GROUPES HYPERBOLIQUES

Soit T' un groupe de type fini et S = {a;,i =1, ...,8} un systeme de
générateurs de I'. Supposons S symetrique, c’est-a-dire:

Vie{l,...,s}; a,+e

et

a;eS=a ' €S.
La métrique des mots relative a S, est définie de la maniere suivante:
g~ g'|s=inf{neN|g-lg = a,...a,, a €5}

La distance | e — g|s sera généralement notée | g |s. Observons que I' agit &
gauche par isométries sur (T, | |s).

Le graphe de Cayley ¥ (I, S) est un l-complexe simplicial géodésique
et propre, dans lequel (T, ||s) est plongé isométriquement. Ses sommets
sont les éléments de I', deux sommets g, g’ sont reliés par une aréte si
g-lg’ €8S, clest-a-dire si |g—g'|s=1. Il est muni de la métrique
simpliciale, c¢’est-a-dire de la métrique de longueur qui donne a chaque aréte

une longueur un.

1.7.1. DEFINITION. Le groupe I' est hyperbolique si I’espace métrique
géodésique propre ¢ (I', S) est hyperbolique.

D’apres ’invariance de ’hyperbolicité par quasi-isométrie, cette définition
est indépendante du systéme de générateurs S. En effet, si S’ en est un autre,
@, | |s) et (T, | |s), et par suite € (I, S) et ¥ (I, S’) sont quasi-isométriques.

1.7.2. EXEMPLES ET PROPRIETES. Sont hyperboliques:

a) Les groupes finis.

b) Les groupes libres de type fini.

c) Les groupes a petite simplification C’(1/6). (Voir [G-H], Appendice.)
Un groupe hyperbolique jouit des propriétés suivantes:

a) Il est de présentation finie, et «presque tout» groupe de présentation finie
est hyperbolique (voir [Ch], théoréme 1.3.2).

b) Il ne contient qu’un nombre fini de classes de conjugaison d’éléments de
torsion (voir [Ch], p. 20).

¢) Il ne contient aucun sous-groupe abélien de rang supérieur ou égal a 2.
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d) Ou bien il est fini, ou bien il est une extension finie de Z, ou bien il contient
un groupe libre de rang au moins deux. Dans les deux premiers cas il est
dit élémentaire. S’il est non élémentaire, il est a croissance exponentielle
(IG-H], chapitre 8, théoréme 37).

e) Il est automatique (voir [C-D-P], [C-E-H-P-T}).

1.8. GROUPES QUASI-CONVEXES

1.8.1. DEFINITION. Soit X un espace métrique géodésique propre,
et x un ¢élément de X. Un sous-groupe d’isométries de X est quasi-convexe,
s’il est proprement discontinu, et si I’orbite de x est un quasi-convexe de X.

On vérifie que la définition est indépendante du point x choisi. Notons
qu’un sous-groupe d’isométries proprement discontinu cocompact, est quasi-
convexe. La propreté de X permet de montrer:

1.8.2. PROPOSITION. Un groupe quasi-convexe I d’isométries de X,
est de type fini. De plus, si S est un systéeme symétrique de générateurs
de T, [Dapplication:

T, [[s) > X
g gx
est une quasi-isométrie.

Pour montrer cette proposition, il suffit d’exhiber un systéme de géné-
rateurs S adéquat. Si ’orbite de x est C-quasi-convexe, on vérifie que
I’ensemble:

S={a;eTl —{e}||x - ax|x<2C+ 1}

convient. |
Supposons maintenant X hyperbolique. Alors, par I’invariance de I’hyper-
bolicité par quasi-isométrie:

1.8.3. COROLLAIRE. Tout groupe quasi-convexe d’isométries d’un
espace hyperbolique, est hyperbolique.

Par l’invariance des quasi-convexes par quasi-isométries, on obtient la
caractérisation suivante des groupes quasi-convexes:

1.8.4. COROLLAIRE. Soit T' un sous-groupe d’isométries d’un espace
hyperboliqgue X. Les assertions suivantes sont équivalentes.

a) I' est quasi-convexe.
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b) T est de type fini, et quels que soient le systéme symétrique de géné-
rateurs S de T, et l’élément x de X, [lapplication

(ra | |S) - X
g 8&x
est une quasi-isométrie.
Rappelons que ’ensemble limite A d’un sous-groupe d’isométries I' de X
est défini de la maniere suivante:

Soit x € X, considérons I'{x} ’adhérence de l'orbite de x dans le
compact X U 0.X. Alors:

A=T{x}ndX.

Il est compact et indépendant du point x choisi.
Si maintenant T est quasi-convexe, alors d’aprés le théoréme 1.6.4, la
quasi-isométrie:

Ir-X
g 8x

s’étend en un plongement quasi-conforme, bi-Holder, de OI' dans 0.X.
Clairement il est indépendant du point x choisi, et son image est A. Dés lors:

1.8.5. COROLLAIRE. Le bord d’un groupe quasi-convexe d’isométries
d’un espace hyperbolique, et son ensemble limite, se correspondent par un
homéomorphisme quasi-conforme, bi-Holder, canonique.

Nous donnons une derniére caractérisation des groupes quasi-convexes
d’isométries d’un espace hyperbolique X. Celle-ci permet de faire le lien avec
les groupes convexes cocompacts de Thurston. Soit £ un sous-ensemble de 8.X.
Son enveloppe de Gromov, notée Q(E), est ’ensemble des (images des)
géodésiques dont les deux extrémités appartiennent a E. C’est un quasi-convexe
de X. Si I" est un sous-groupe d’isométries de X, ’enveloppe de Gromov de
son ensemble limite est I'-invariante; et on a (voir [C]):

1.8.6. PROPOSITION. I' est quasi-convexe si et seulement si il est
proprement discontinu et si Q(A)/I" est compact.

1.8.7. EXEMPLES. Soit I' un sous-groupe d’isométries de Hy. Rap-
pelons que I' est convexe cocompact, s’il est proprement discontinu, et s’il
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agit de maniére cocompacte sur 1’enveloppe convexe H(A) de son ensemble
limite. Il est quasi-convexe si et seulement si il est convexe cocompact.
En effet, Q(A) et H(A) sont a distance de Hausdorff finie. Une maniére de
le montrer est la suivante (voir [C]): Le convexe H(A) est la réunion
des n-simplexes idéaux de Hy, dont les arétes sont des géodésiques de O(A)
(c’est un théoréme de Carathéodory appliqué au modéle de Klein de Hy
(voir [Ber], théoréme 11.1.8.6)). Or tout point d’un n-simplexe de Hp
est a distance majorée par une constante universelle C(n), de ses arétes.

Signalons aussi que I' est convexe cocompact si et seulement si il est
geométriquement fini sans parabolique (une conséquence de la décomposition
de Margulis en parties fines et épaisses).

Enfin, tout groupe fuchsien de type fini est géométriquement fini
(voir [Bea], chapitre 10). Aussi, un groupe fuchsien est quasi-convexe si et
seulement si il est de type fini sans parabolique.

2. STRUCTURE CONFORME SUR LE BORD D’UN CAT (—1)-ESPACE

ENSEMBLE LIMITE ET FLOT GEODESIQUE ASSOCIES
A UNE ACTION QUASI-CONVEXE

2.0. INTRODUCTION

Soit X un CAT (- 1)-espace. Nous montrons que son bord admet une
structure conforme canonique, compatible avec sa structure quasi-conforme.
Plus précisément, nous construisons sur d.X une famille de métriques visuelles
{d,,x € X}, deux a deux conformes, qui ont la propriété que les isométries
de X soient des applications conformes de (0.X, d,).

Rappelons qu’une application f: (A4, d4) = (B, dg) est conforme, si quel
que soit ay € A, la limite lorsque a tend vers a, de

dg(f(a), f(ao))
ds(a, aop)

existe et est finie non nulle. On ’appellera le facteur conforme de f en aq.
Rappelons également que deux métriques d,, d, sur A, sont conformes, si
I’identité (A4, d;) — (A, d,) est conforme.

Soit maintenant une action isométrique quasi-convexe d’un groupe
hyperbolique I' sur un CAT(—1)-espace X. A cette action sont associés:

— L’ensemble limite de I" dans 8.X, muni de la structure conforme induite,
sur lequel agit I" par transformations conformes.
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