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INTRODUCTION

On ¢étudie ici les actions isométriques quasi-convexes d’un groupe
hyperbolique au sens de M. Gromov, sur les CAT (— 1)-espaces. Ces espaces,
qui remontent a Aleksandrov, connaissent depuis quelque temps déja un regain
d’intérét sous I’impulsion de M. Gromov. Ils forment une vaste généralisation
des variétés riemanniennes simplement connexes a courbure inférieure a — 1,
les exemples les plus fameux étant les polyédres hyperboliques de M. Gromov.
Nous nous intéressons plus particuliérement au flot géodésique associé a une
action quasi-convexe sur un tel espace, et a I’action du groupe sur son ensemble
limite. Le principal résultat est le suivant:

Comme tout espace hyperbolique, un CAT (— 1)-espace X admet un bord,
lui-méme muni d’une structure quasi-conforme canonique (un invariant de
quasi-isométrie de X'). La propriété CAT (— 1) permet d’affiner cette structure:
nous construisons sur 0.X une structure conforme canonique compatible avec
sa structure quasi-conforme et invariante par les isométries de X. Elle est
décrite par une famille de métriques visuelles deux a deux conformes que nous
construisons a partir des fonctions de Busemann.

Soit maintenant une action isométrique quasi-convexe d’un groupe
hyperbolique I" sur un CAT (—1)-espace X. On sait que I’ensemble limite
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de I' dans 8.X et le flot géodésique sont intimement liés au groupe. En effet
si T' agit comme précédemment sur deux CAT(—1)-espaces, alors les
ensembles limites associés (qui sont canoniquement homéomorphes a dI') se
correspondent par un homéomorphisme Q, canonique, I'-équivariant et quasi-
conforme. De méme, d’aprés une construction de M. Gromov, les espaces du
flot géodésique se correspondent par une équivalence d’orbites (un homeo-
morphisme envoyant orbites sur orbites sans préserver en général le
paramétrage). Nous montrons que ’homéomorphisme quasi-conforme € est
conforme si et seulement si I’équivalence d’orbites de M. Gromov est réalisée
par une conjugaison des flots géodésiques (une équivalence d’orbites qui
préserve le paramétrage). Ainsi la structure conforme de I’ensemble limite
détermine le flot géodésique et inversement. La preuve de ce résultat consiste
en grande partie a adapter aux CAT (— 1)-espaces certaines idées développées
par Hopf, Patterson, Sullivan sur les variétés a courbure —1; en particulier
les mesures conformes sur I’ensemble limite, et les mesures induites sur le carré
de I’ensemble limite et sur I’espace du flot géodésique.

La premicre partie de cet article est plutot destinée au lecteur peu familier
de la théorie de M. Gromov des espaces hyperboliques. On y rappelle
quelques notions et résultats fondamentaux concernant notamment: les
CAT (—b?)-espaces, le bord d’un espace hyperbolique et ses métriques
visuelles, les actions quasi-convexes d’un groupe hyperbolique et leurs
ensembles limites.

Dans la deuxiéme partie on construit la structure conforme du bord
d’un CAT (- 1)-espace. On définit le flot géodésique associé a une action
quasi-convexe sur un CAT (—1)-espace. Enfin on montre que la structure
conforme de ’ensemble limite caractérise le flot et inversement.

Je remercie Pierre Pansu qui a dirigé ma thése que reprend en partie
cet article.

1. PRELIMINAIRES

On rappelle dans ce chapitre les notions d’espaces et de groupes hyper-
boliques, qui nous seront utiles par la suite. Pour plus de détails, on pourra
se référer a [G], [G-H], [C-D-P], [C].

1.1. GENERALITES SUR LES ESPACES METRIQUES

Sont rassemblées ici les définitions qui seront d’un usage constant.

Soient (X, dx), (Y,dy) deux espaces métriques. Afin d’alléger les
notations, la distance d(x, x") sera souvent notée | x — x’ .



	Introduction

