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Introduction

On étudie ici les actions isométriques quasi-convexes d'un groupe
hyperbolique au sens de M. Gromov, sur les CAT(— l)-espaces. Ces espaces,

qui remontent à Aleksandrov, connaissent depuis quelque temps déjà un regain
d'intérêt sous l'impulsion de M. Gromov. Ils forment une vaste généralisation
des variétés riemanniennes simplement connexes à courbure inférieure à -1,
les exemples les plus fameux étant les polyèdres hyperboliques de M. Gromov.
Nous nous intéressons plus particulièrement au flot géodésique associé à une
action quasi-convexe sur un tel espace, et à l'action du groupe sur son ensemble

limite. Le principal résultat est le suivant:

Comme tout espace hyperbolique, un CAT(— l)-espace X admet un bord,
lui-même muni d'une structure quasi-conforme canonique (un invariant de

quasi-isométrie de A). La propriété CAT(- 1) permet d'affiner cette structure:
nous construisons sur dX une structure conforme canonique compatible avec

sa structure quasi-conforme et invariante par les isométries de X. Elle est

décrite par une famille de métriques visuelles deux à deux conformes que nous
construisons à partir des fonctions de Busemann.

Soit maintenant une action isométrique quasi-convexe d'un groupe
hyperbolique T sur un CAT (-1)-espace X. On sait que l'ensemble limite
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de T dans dX et le flot géodésique sont intimement liés au groupe. En effet

si T agit comme précédemment sur deux CAT (-1)-espaces, alors les

ensembles limites associés (qui sont canoniquement homéomorphes à 6T) se

correspondent par un homéomorphisme Q, canonique, T-équivariant et quasi-

conforme. De même, d'après une construction de M. Gromov, les espaces du

flot géodésique se correspondent par une équivalence d'orbites (un
homéomorphisme envoyant orbites sur orbites sans préserver en général le

paramétrage). Nous montrons que l'homéomorphisme quasi-conforme Q est

conforme si et seulement si l'équivalence d'orbites de M. Gromov est réalisée

par une conjugaison des flots géodésiques (une équivalence d'orbites qui
préserve le paramétrage). Ainsi la structure conforme de l'ensemble limite
détermine le flot géodésique et inversement. La preuve de ce résultat consiste

en grande partie à adapter aux CAT(— 1)-espaces certaines idées développées

par Hopf, Patterson, Sullivan sur les variétés à courbure -1 ; en particulier
les mesures conformes sur l'ensemble limite, et les mesures induites sur le carré
de l'ensemble limite et sur l'espace du flot géodésique.

La première partie de cet article est plutôt destinée au lecteur peu familier
de la théorie de M. Gromov des espaces hyperboliques. On y rappelle
quelques notions et résultats fondamentaux concernant notamment: les

CAT(-b2)-espaces, le bord d'un espace hyperbolique et ses métriques
visuelles, les actions quasi-convexes d'un groupe hyperbolique et leurs
ensembles limites.

Dans la deuxième partie on construit la structure conforme du bord
d'un CAT( — 1)-espace. On définit le flot géodésique associé à une action
quasi-convexe sur un CAT (-1)-espace. Enfin on montre que la structure
conforme de l'ensemble limite caractérise le flot et inversement.

Je remercie Pierre Pansu qui a dirigé ma thèse que reprend en partie
cet article.

1. Préliminaires

On rappelle dans ce chapitre les notions d'espaces et de groupes
hyperboliques, qui nous seront utiles par la suite. Pour plus de détails, on pourra
se référer à [G], [G-H], [C-D-P], [C].

1.1. Généralités sur les espaces métriques

Sont rassemblées ici les définitions qui seront d'un usage constant.
Soient (X, dx), (Y,dy) deux espaces métriques. Afin d'alléger les

notations, la distance d(x,x') sera souvent notée \ x — x' \.
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