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STRUCTURE CONFORME AU BORD
ET FLOT GEODESIQUE D’UN CAT (- 1)-ESPACE

par Marc BOURDON

RESUME. Soit X un CAT (- 1)-espace. On montre que son bord admet
une structure conforme canonique invariante par les isométries de X. Soit
maintenant un groupe hyperbolique agissant sur X par isométries, de maniere
quasi-convexe. On étudie la structure conforme de son ensemble limite en.
liaison avec le flot géodésique.

ABSTRACT. Let X be a CAT(—1)-space. We show that its boundary
admits a canonical conformal structure, invariant by the isometries of X.
Now let I be a hyperbolic group acting on X by isometries, in a quasi-convex
way. We study the conformal structure of its limit set linked with the
geodesic flow.
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INTRODUCTION

On ¢étudie ici les actions isométriques quasi-convexes d’un groupe
hyperbolique au sens de M. Gromov, sur les CAT (— 1)-espaces. Ces espaces,
qui remontent a Aleksandrov, connaissent depuis quelque temps déja un regain
d’intérét sous I’impulsion de M. Gromov. Ils forment une vaste généralisation
des variétés riemanniennes simplement connexes a courbure inférieure a — 1,
les exemples les plus fameux étant les polyédres hyperboliques de M. Gromov.
Nous nous intéressons plus particuliérement au flot géodésique associé a une
action quasi-convexe sur un tel espace, et a I’action du groupe sur son ensemble
limite. Le principal résultat est le suivant:

Comme tout espace hyperbolique, un CAT (— 1)-espace X admet un bord,
lui-méme muni d’une structure quasi-conforme canonique (un invariant de
quasi-isométrie de X'). La propriété CAT (— 1) permet d’affiner cette structure:
nous construisons sur 0.X une structure conforme canonique compatible avec
sa structure quasi-conforme et invariante par les isométries de X. Elle est
décrite par une famille de métriques visuelles deux a deux conformes que nous
construisons a partir des fonctions de Busemann.

Soit maintenant une action isométrique quasi-convexe d’un groupe
hyperbolique I" sur un CAT (—1)-espace X. On sait que I’ensemble limite
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de I' dans 8.X et le flot géodésique sont intimement liés au groupe. En effet
si T' agit comme précédemment sur deux CAT(—1)-espaces, alors les
ensembles limites associés (qui sont canoniquement homéomorphes a dI') se
correspondent par un homéomorphisme Q, canonique, I'-équivariant et quasi-
conforme. De méme, d’aprés une construction de M. Gromov, les espaces du
flot géodésique se correspondent par une équivalence d’orbites (un homeo-
morphisme envoyant orbites sur orbites sans préserver en général le
paramétrage). Nous montrons que ’homéomorphisme quasi-conforme € est
conforme si et seulement si I’équivalence d’orbites de M. Gromov est réalisée
par une conjugaison des flots géodésiques (une équivalence d’orbites qui
préserve le paramétrage). Ainsi la structure conforme de I’ensemble limite
détermine le flot géodésique et inversement. La preuve de ce résultat consiste
en grande partie a adapter aux CAT (— 1)-espaces certaines idées développées
par Hopf, Patterson, Sullivan sur les variétés a courbure —1; en particulier
les mesures conformes sur I’ensemble limite, et les mesures induites sur le carré
de I’ensemble limite et sur I’espace du flot géodésique.

La premicre partie de cet article est plutot destinée au lecteur peu familier
de la théorie de M. Gromov des espaces hyperboliques. On y rappelle
quelques notions et résultats fondamentaux concernant notamment: les
CAT (—b?)-espaces, le bord d’un espace hyperbolique et ses métriques
visuelles, les actions quasi-convexes d’un groupe hyperbolique et leurs
ensembles limites.

Dans la deuxiéme partie on construit la structure conforme du bord
d’un CAT (- 1)-espace. On définit le flot géodésique associé a une action
quasi-convexe sur un CAT (—1)-espace. Enfin on montre que la structure
conforme de ’ensemble limite caractérise le flot et inversement.

Je remercie Pierre Pansu qui a dirigé ma thése que reprend en partie
cet article.

1. PRELIMINAIRES

On rappelle dans ce chapitre les notions d’espaces et de groupes hyper-
boliques, qui nous seront utiles par la suite. Pour plus de détails, on pourra
se référer a [G], [G-H], [C-D-P], [C].

1.1. GENERALITES SUR LES ESPACES METRIQUES

Sont rassemblées ici les définitions qui seront d’un usage constant.

Soient (X, dx), (Y,dy) deux espaces métriques. Afin d’alléger les
notations, la distance d(x, x") sera souvent notée | x — x’ .
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Quasi-isométrie: Une application f: X — Y est une (A, k)-quasi-isométrie,
si quels que soient les éléments x, x’ de X:

M x = x|x = k< f(X) = f(x)

On dit qu’elle est une quasi-isométrie, si 1’on ne tient pas a préciser les
constantes A et k. Remarquons qu’une quasi-isométrie n’est pas en général
continue.

y<Mx—-x"|x+ k.

Espaces quasi-isométriques: Les espaces métriques X et Y sont quasi-
isométriques, s’ils satisfont ’une des deux conditions équivalentes suivantes:

(1) Il existe des quasi-isométries f: X = Y, g: Y = X et un réel € > 0, tels
que fo g et g o f soient g-proches de 1’identité.

(i) Il existe une quasi-isométrie f: X — Y et un réel € > 0, tels que f(X)
soit e-dense dans Y.

Rappelons qu’un sous-ensemble Z de Y est e-dense, si le e€-voisinage
de Z dans Y est Y.

Géodeésiques: Un segment géodésique (resp. un rayon géodésique),
(resp. une géodésique) de X, est une isométrie:

v:I—= X

ou I est un intervalle de R, fermé borné, (resp. fermé semi-infini),
(resp. R).

Etant donné deux éléments x, x’ de X, on notera [xx'] tout segment
géodésique:

v:la,b] > X; avec vy(a)=x, v(b)=x".

D’autre part, on se permettra souvent de confondre un segment géodésique,
ou un rayon, ou une géodésique, avec son image.

Espaces géodésiques: L’espace X est géodésique, si deux éléments
quelconques de X peuvent étre reliés par un segment géodésique.

Quasi-géodésiques: Un (A, k)-quasi-segment géodésique, (resp. rayon
géodésique), (resp. géodésique) de X, est une (A, k)-quasi-isométrie:

vi:I—- X

ou / est un intervalle de R, fermé borné, (resp. fermé semi-infini), (resp. R).
Si ’on ne tient pas a préciser les constantes A et k, on dira seulement
quasi-segment géodésique (resp. rayon), (resp. géodésique).
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Quasi-convexe: Supposons X géodésique. Un sous-ensemble Z de X est
C-quasi-convexe, si deux points quelconques de Z peuvent étre relies par
un segment géodésique contenu dans le C-voisinage de Z dans X. Il est
quasi-convexe, s’il est C-quasi-convexe pour un certain réel C.

1.2. ESPACES HYPERBOLIQUES GEODESIQUES

Désormais, (X, dx) est un espace métrique géodésique.

1.2.1. DEFINITION
a) Le triangle [xy] U [yz] U [zx] de X est &-fin si pour tout u appartenant
a [xy], on a:
dx(u, [yz] L [zx]) < 5.

b) X est &-hyperbolique si tout triangle de X est &-fin. Il est hyperbolique,
s’il est &-hyperbolique pour un certain réel 3.

Observons qu’un espace &-hyperbolique a la propriété suivante: deux
segments géodésiques de mémes extrémités, sont a distance de Hausdorff
inférieure a 8. Autrement dit, chacun est contenu dans le &-voisinage de
I’autre.

1.2.2. EXEMPLES (voir [C-D-P], chapitre 1, §4 et 5).

a) Un arbre métrique est O-hyperbolique.
b) L’espace hyperbolique réel n-dimensionnel Hg est log 3-hyperbolique.

¢) D’aprés le théoréme de comparaison d’Aleksandrov-Toponogov,
toute variété riemannienne simplement connexe a courbure < —b2, est
(log 3/ b)-hyperbolique.

Une premiere propriété fondamentale des espaces hyperboliques est:

1.2.3. THEOREME (Propriété des quasi-segments géodésiques). 1l existe
une constante C ne dépendant que de M\, k, 8, avec la propriété suivante:
tout (A, k)-quasi-segment géodésique d’un espace S-hyperbolique, est
a distance de Hausdorff inférieure @ C, de n’importe quel segment
géodésique joignant ses extrémités.

Dont on déduit immédiatement:

1.2.4.  COROLLAIRE (Invariance de I’hyperbolicité par quasi-isométrie).
Soient (X, dx), (Y,dy) deux espaces géodésiques.
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a) Si Y est hyperbolique et s’il existe une quasi-isométrie de X dans Y,
alors X est hyperbolique.

b) Si X et Y sont quasi-isométriques, alors X est hyperbolique si et
seulement si 'Y [est.

1.2.5. COROLLAIRE (Invariance des quasi-convexes par quasi-isométrie).
Soient (X,dx) (Y,dy) deux espaces géodésiques et [ une quasi-
isométrie de X dans Y. Si Y est hyperbolique, ’'image par [ de
tout quasi-convexe de X est un quasi-convexe de Y.

1.3. CAT (— b?)-ESPACES

Nous décrivons une généralisation des exemples 1.2.2. Ces espaces seront
pour nous d’un intérét particulier.

Soit (X, dyx) un espace métrique géodésique, et soit Hx(—b?) ’espace
hyperbolique réel deux-dimensionnel, a courbure constante — b?2.

A tout triangle A = [xy] U [yz] u [zx] de X associons un triangle
A = [xylulrz]lulzx] de Hf{(—bz) dont les cOtés ont méme longueur
que ceux de A. Le triangle A est unique a isométrie pres. Il est appelé triangle
de comparaison associé a A. Soit:

A— A

s s
I’application naturelle dont la restriction a chacun des cotés de A est une
isométrie.

1.3.1. DEFINITION
a) On dit que A satisfait CAT (—b?) (comparaison Aleksandrov Theorem),
si quels que soient s, ¢ appartenant a A:
dX(S’ t) < dHZR(_.bZ) (E’ t—) .

b) X est un CAT (- b?)-espace si tout triangle de X satisfait CAT (—b?).

Les CAT (- b?)-espaces ont la plupart des propriétés des variétés rieman-
niennes simplement connexes a courbure < —b2. En voici quelques-unes,
immédiates a partir de la définition:

a) Deux points de X déterminent un unique segment géodésique.
b) X est (log 3/b)-hyperbolique.

¢) X est contractible.
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d) La fonction distance entre deux segments géodésiques est strictement
convexe.

Une autre propriété importante, est leur caractérisation locale suivante. Elle
permet de construire de nombreux exemples de CAT (- b?)-espace, dont les
fameux polyédres hyperboliques de M. Gromov (voir [G-H] chapitre 10,
[Be], [Ha]).

1.3.2. DEFINITION-THEOREME. L’espace X est dit a courbure infe-
rieure ou égale a —b2?, si tout point de X admet un voisinage satis-
faisant CAT(—5b2). Si X est géodésique simplement connexe a courbure
< — b2, alors X est un CAT (— b?)-espace.

1.4. BORD D’UN ESPACE HYPERBOLIQUE

Soit (X, dx) un espace 8-hyperbolique. Afin de lui appliquer le théoreme
d’Ascoli, supposons-le propre (un espace métrique est propre, si ses boules
fermées sont compactes).

Définissons Z I’ensemble des rayons géodésiques et munissons-le de la
relation d’équivalence suivante: Deux rayons sont équivalents s’ils sont a
distance de Hausdorff bornée.

L’ensemble des classes d’équivalence est le bord de X, on le note 9.X.

On définit une topologie sur X U 3.X, de la maniére suivante:

Soit x une origine dans X, et soit Z(x) I’ensemble des rayons et des
segments géodésiques:

v:I—-> X

ou [ est un intervalle du type [0, + o[ ou [0, a], a € R+, et v vérifie y(0) = x.
Si I = [0, a], convenons de prolonger y a [0, + o[, en posant y(z) = v(a)
pour ¢ supérieur & ¢. Munissons Z(x) de la topologie de la convergence
uniforme sur les compacts. D’aprés le théoréme d’Ascoli, % (x) est compact
et "application naturelle de Z2(x) dans X U 8.X est surjective. Equipé de la
topologie quotient, X U 8.X est un compact, dans lequel ’espace meétrique X
est ouvert et dense. Ainsi le compact 8 X permet de compactifier X. On montre
que la topologie est indépendante de I’origine x.
Le théoréeme d’Ascoli et les propriétés du paragraphe 1.2 donnent:
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1.4.1. PROPOSITION

a) Soit xeX, et EedX. Il existe un rayon géodésique d’extré-
mités x et &. On le notera [x&). Deux rayons géodésiques de mémes
extrémités sont a distance de Hausdorff inférieure a 28.

b) Soient & et &' deux points distincts de 8X. Il existe une géodésique
d’extrémités & et &’. On la notera (§£E'). Deux géodésiques de mémes
extrémités sont a distance de Hausdorff inférieure a 48.

c) (Propriétés des quasi-rayons géodésiques et des quasi-géodésiques). 1l
existe une constante C ne dépendant que de &,\, k, avec la propriété
suivante: tout (A, k)-quasi-rayon géodésique (resp. quasi-géodésique) de X,
est a distance de Hausdorff inférieure a C d’un rayon géodésique
(resp. géodésique) de X.

1.4.2. Remarque. Lorsque X est un CAT (—b?)-espace, deux points
de X U 0X détermine un unique arc géodésique. C’est immédiat par compa-
raison avec H(—b2).

1.4.3. EXEMPLES
a) Le bord d’un arbre réel propre est totalement discontinu.

b) Soit X une variété riemannienne simplement connexe, de dimension finie,
a courbure inférieure & — b?. Etant donnée une origine x dans X, I’appli-
cation exponentielle de I’espace tangent en x, induit un homéomorphisme de
la sphere unité sur 90.X.

¢) Soit X un CAT (— b?)-espace, et x une origine dans X. Notons S(x, R) la
spheére de centre x et de rayon R. Deux points de X déterminent un unique
segment géodésique, donc pour R > R’, il existe une application naturelle
de S(x, R) dans S(x, R’). On montre que 8.X est homéomorphe a la limite
projective des S(x, R), lorsque R tend vers l’'infini. Notons que le bord
d’un CAT(—b?)-espace est généralement compliqué. N. Benakli [Be]
a construit des exemples (polyedres de Gromov), dont le bord est une courbe
de Menger ou de Sierpinski.

1.5. METRIQUES VISUELLES SUR 0.X

De méme qu’un changement conforme de métrique sur Hg, permet
d’identifier son bord a celui de la boule euclidienne de rayon un, on peut
modifier de maniére «conforme» la métrique d’un espace 8-hyperbolique X,
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afin que X u 80X soit le complété de X pour cette nouvelle métrique.
(Voir [G], [C-D-P], [C], pour plus de détails). Ainsi d.X hérite d’une métrique
compatible avec sa topologie. Les métriques obtenues de cette maniére ont la
propriété de visibilité, c’est-a-dire:

1.5.1. DEFINITION. Soit x une origine dans X. Une métrique dpx
sur 8.X a la propriété de visibilité, si elle est relice a celle de X de la facon
suivante: Il existe une constante C > 1 et un réel # > 1, tels que pour tous
éléments &, £’ de 0.X:

C1t-4< dox(§,8) < Ct™7.
avec

d=dx(x,(88") .

Une telle métrique est appelée métrique visuelle de parametres (x, 7).

L’énoncé précis est le suivant: ([G], §7.2, [C-D-P], chapitre 11):

1.5.2. THEOREME (Gromov). Il existe un réel ty,> 1, ne dépendant
que de &, tel que pour tout t appartenant a 11,t[, le bord de X
admette une métrique visuelle de parametres (x,t).

1.5.3. Remarques

a) Pour les CAT (—b?)-espaces, le résultat est plus fin: leur bord admet
une métrique visuelle de parameétre ¢, quel que soit ¢ appartenant a ]1, e?].
Une maniére de le montrer est d’utiliser les idées de W.J. Floyd [F]. Nous en

proposerons une autre au paragraphe 2.5. Notons que e? est optimal car il
Iest sur Hg(—b2).

b) Deux métriques visuelles d et d’ de paramétres respectifs (x, ¢) et (x’, ")
sont facilement comparables: Si ¢ = ¢, alors elles sont Lipschitz-équivalentes:
il existe une constante D > 1, telle que:

D-'d<d <Dd.

Sinon, elles sont Holder-équivalentes: il existe une constante D > 1 et un
réel a > 0, tels que:

D-1de < d’ < Dde.
Ici a est égal a logt’/logt.

c) D’aprés b), toute isométrie de X est un homéomorphisme bi-Lipschitz
du bord de X muni d’une métrique visuelle.
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1.6. ACTION AU BORD DES QUASI-ISOMETRIES

Commencons par rappeler la définition d’application quasi-conforme.
Un k-anneau, k > 1, d’un espace métrique (E, d), est un couple (B;, B,)
de deux boules concentriques, dont les rayons r; et r, vérifient la relation:

r2=kr1. /|,

Une application:
fi(E, d)—(E',d")

est quasi-conforme (au sens des anneaux), s’il existe une fonction y de [1, + oo
dans lui-méme, telle que I’image par f de tout k-anneau est contenue dans
un y(k)-anneau de (E’,d’). Autrement dit, si (B;,B;) est un k-anneau
de (£, d), alors il existe un y(k)-anneau (B, B;) de (E’,d’), tel que:

By C f(B1) C f(B2) C B;.

Notons en particulier que I’image d’une boule de (E, d) est contenue dans
un y(1)-anneau de (E’, d’).

Un homéomorphisme f est quasi-conforme si f et f~-! sont quasi-
conformes. De méme, un plongement est quasi-conforme, s’il est un
homéomorphisme quasi-conforme sur son image.

Afin de décrire les boules, et par suite les anneaux d’une métrique visuelle
sur le bord d’un espace &-hyperbolique, rappelons la notion classique
d’ombre:

1.6.1. DEFINITION (Margulis). Soit x une origine dans X. L’ombre
portée a partir de x, de la boule B(y, R) de X, est le sous-ensemble de 0.X

§ }0(«‘:’ R)
X (%

J

FIGURE 1 a—X
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noté O(y, R), des extrémités des rayons géodésiques issus de x passant par
B(y, R). On dit que O(y, R) est centrée en &, si y appartient a un rayon
géodésique [x&). (Voir figure 1).

Etant donnée une métrique visuelle d de paramétres (x,?) sur 90X, a
I’ombre O(y, R) attachons le rayon:

r(y) = t=lx=»l,
La propriété de visibilité donne alors:

1.6.2. LEMME. Pour R suffisamment grand, (R =58 convient), il
existe une constante D = D(R) > 1, telle que pour toute boule B(E,r)
de (0X,d), on puisse trouver des ombres O(y,R) et O(y,, R)
centrées en £, vérifiant:

O(y1,R) C B(§,r) C O(y2, R)
et
D-1r(y;) <r < Dr(y1) .
Ainsi, les boules de (08X, d) ressemblent aux ombres.

Preuve de 1.6.2. Rappelons qu’il existe une constante C > 1 telle que
pour tout point £, ¢’ de 0.X on ait:

(1) C-'t-94<d(, )< Ct~? avec d=dx(x,(§8")).

D’autre part observons que tout triangle de X u 08X est 56-fin
(voir 1.4.1.b)).

Soit R > 58, £ un point de 8.X, B(E, r) une boule de 8.X centrée en &,
et v un rayon géodésique joignant x a . Prenons y, le point de y vérifiant:

| x — yo| = max{0, — log,Cr — 58 — 1}

et montrons que B(&,r) est contenue dans O(y,, R). Soit £’ un point
de B(&,r), le triangle (xEE’) étant 56-fin, on a:

d(y2, [x§") L (£€7) < 58
Or par P'inégalité triangulaire et (1):

d(y2,(£89) = d(x, (E€) — | x — ¥, ]|
> —log,Cr —|x — y,|
>58 +1

donc: d(y,, [x€")) < 58 < R et & appartient & O(y,, R).
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Prenons y, le point de y vérifiant:

|x—y1|= —logtg+R+106

(d’apres (1), r < C, donc —log,(r/C)+ R + 108 > 0) et montrons que
B(&,r) contient O(y,,R). Soit & un point de O(y,,R), Yy  un rayon
géodeésique joignant x a & passant par B(y;,R), P un point appartenant
aynB(,R)et Qun point de (') vérifiant:

|x - Q[ =d(x, (£&)) .

Considérons le quadrilatére (y;PEE’), en le subdivisant en deux triangles,
on voit qu’il est 108-fin, aussi: ‘

d(Q, [Pyl U [PE') U [y:€)) < 108 .
D’autre part:
d(x, [Py U [PE) U [118) 2 |x — 1| - R.
Donc:

d(x,(£¢)) =|x - Q|
> d(x, [Py] u [PE) U [¥8)) — d(Q, [Py\] U [PE’) U [¥E))

»
>|x—y|-R-108 = - log, —
C
alors d’apres (1), d(§,&’) < r et &’ appartient a B(E, r).
On a donc trouvé deux ombres centrées en & qui vérifient:
O(y1,R) CB(&,r) CO(2,R) .
Leurs rayons satisfont:
r(y;) =t R-108C-1r et r(y,) <t3*1Cr.
Posons D = max{tR+108C, ¢3*+1C}. On obtient:

D-r(y;) <r<Dr(y;). U

De maniére symétrique, on a aussi:

1.6.3. LEMME. Pour R suffisamment grand (R =58 convient),
il existe une constante E = E(R) > 1, telle que pour tout & € 80X et toute
ombre O(y,R) centrée en E, on puisse trouver des boules B(&,r;)
et B(,r,) de (0X,d) vérifiant:
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B(&,r)) C O(y,R) C B(§, 1)
avec
E-'ry<r(y) <Er .

Preuve de 1.6.3. Elle est semblable a la précédente, donnons-la
néanmoins. On reprend les notations de la preuve de 1.6.2.

Soit r; = C-1¢~5-1r(y), montrons que B(§,r;) est contenue dans
O(y, R). Soit &’ un point de B(§, r1). Le triangle (xEE') étant 56-fin, on a:

d(y, [x&") U (EE")) < 58.
D’autre part, d’aprés I’inégalité triangulaire, les inégalités (1) et le choix
de r;:
> d(x, (§89) — |x — ¥ |
> —log,d(§,&") — log,C + log.r(y)
>50+1

d(y,(§€")

donc d(y, [xE") < 58 < R et & appartient & O(y, R).
Soit r, = CtR+108 r(y). Montrons que B(§, r,) contient O(y, R). Soit &’
un point de O(y, R); comme dans la preuve de 1.6.2, on a:
d(x, (€)= |x—y|— R - 105.

Donc d’aprés (1) et le choix de r,:

d(E,8) < CtR+1%r(y) =r,

et £’ appartient a B(&, r,).
Posons E = max{Ct38+1, CtR+103} " on obtient

E-'r,<r(y)<Er.. [
D’aprés la propriété des quasi-rayons géodésiques dans un espace
hyperbolique, I’image d’une ombre se compare aisément a une ombre. Ainsi,

et en utilisant les lemmes 1.6.2 et 1.6.3, on obtient la généralisation suivante
d’un théoréme de Margulis.

1.6.4. THEOREME. Soit X et X' deux espaces hyperboliques.
Supposons leurs bords équipés de métriques visuelles.

a) Toute quasi-isométrie f de X dans X' s’étend en un plongement
quasi-conforme, bi-Holder, de 00X dans 0X’.

b) Si X et X' sont quasi-isométriques, leurs bords se correspondent par
un homéomorphisme quasi-conforme bi-Hdélder.
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Preuve de 1.6.4. 11 suffit de montrer a). Soit x une origine dans X,
prenons pour 6rigine de X’ le point f(x). Soit respectivement d et d’ des
métriques visuelles de parameétre (x, ¢) et (f(x),¢’) sur 89X et 3.X".

Par la propriété des quasi-rayons géodésiques (1.4.1.c)), f s’étend en une
application de 0.X dans d.X’, notée df. C’est un plongement bi-Holder a cause
des définitions des métriques visuelles et de la propriété des quasi-géodésiques.

Pour montrer que df est un plongement quasi-conforme, on utilise les
ombres:

Soit & un point de 8.X, y, et y; deux points dans cet ordre sur [x£),
O(y1,R) et O(y,,R) les ombres portées depuis x des boules B(y;, R)
et B(y,,R) de X. Par la propriété des quasi-rayons géodésiques, il
existe des constantes R; > 0 et R, > 0 qui ne dépendent que de R, des
constantes de quasi-isométrie de f et de I’hyperbolicité de X et de X”’; avec les
propriétés suivantes: Notons yi et y, les projections de f(y;) et de f(),)
sur [f(x)df(€)). Soit O(yi,Ry) et O(y5,R,) les ombres portées depuis
Jf(x) des boules B(y{, R;) et B(y;, R,) de X'; elles sont centrées en 0/ (§).
Alors si R a été choisi suffisamment grand:

O(»1,R1) Nndf(@X) CAf(O(y:,R))
C 3f(0(y2,R)) C O(y3, Ry) N df(BX) .

De plus le rapport des rayons des ombres O(yi, R;) et O(y5, R,) est borné
par une fonction du rapport des rayons de O(y;, R) et de O(y,, R) qui ne
dépend que des constantes de quasi-isométrie de f, de I’hyperbolicité de X
et de X', et des paramétres 7 et ¢’.

Alors les lemmes 1.6.2 et 1.6.3 montrent que 0f est quasi-conforme sur
son image. De facon analogue, 0f ~! est quasi-conforme de 9f(d.X) sur 9.X.
Ainsi 9f est un plongement quasi-conforme. [

1.6.4. Remarque. Deux métriques d, et d, sur un méme espace E sont
dites quasi-conformes si ’identité de (E,d;) sur (E,d,) est un homéo-
morphisme quasi-conforme. Clairement la composée de deux applications
quasi-conformes est quasi-conforme. Aussi, la relation: «d, et d, sont quasi-
conformes», est une relation d’équivalence sur I’ensemble des métriques de E.
La classe d’équivalence d’une métrique d de E est appelée structure quasi-
conforme de (E,d). (Voir [Pan] pour une définition plus générale). Le
théoréme 1.6.4.(b) indique que la structure quasi-conforme d’une métrique
visuelle sur 0.X, est un invariant de quasi-isométrie de X.
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1.7. GROUPES HYPERBOLIQUES

Soit T' un groupe de type fini et S = {a;,i =1, ...,8} un systeme de
générateurs de I'. Supposons S symetrique, c’est-a-dire:

Vie{l,...,s}; a,+e

et

a;eS=a ' €S.
La métrique des mots relative a S, est définie de la maniere suivante:
g~ g'|s=inf{neN|g-lg = a,...a,, a €5}

La distance | e — g|s sera généralement notée | g |s. Observons que I' agit &
gauche par isométries sur (T, | |s).

Le graphe de Cayley ¥ (I, S) est un l-complexe simplicial géodésique
et propre, dans lequel (T, ||s) est plongé isométriquement. Ses sommets
sont les éléments de I', deux sommets g, g’ sont reliés par une aréte si
g-lg’ €8S, clest-a-dire si |g—g'|s=1. Il est muni de la métrique
simpliciale, c¢’est-a-dire de la métrique de longueur qui donne a chaque aréte

une longueur un.

1.7.1. DEFINITION. Le groupe I' est hyperbolique si I’espace métrique
géodésique propre ¢ (I', S) est hyperbolique.

D’apres ’invariance de ’hyperbolicité par quasi-isométrie, cette définition
est indépendante du systéme de générateurs S. En effet, si S’ en est un autre,
@, | |s) et (T, | |s), et par suite € (I, S) et ¥ (I, S’) sont quasi-isométriques.

1.7.2. EXEMPLES ET PROPRIETES. Sont hyperboliques:

a) Les groupes finis.

b) Les groupes libres de type fini.

c) Les groupes a petite simplification C’(1/6). (Voir [G-H], Appendice.)
Un groupe hyperbolique jouit des propriétés suivantes:

a) Il est de présentation finie, et «presque tout» groupe de présentation finie
est hyperbolique (voir [Ch], théoréme 1.3.2).

b) Il ne contient qu’un nombre fini de classes de conjugaison d’éléments de
torsion (voir [Ch], p. 20).

¢) Il ne contient aucun sous-groupe abélien de rang supérieur ou égal a 2.
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d) Ou bien il est fini, ou bien il est une extension finie de Z, ou bien il contient
un groupe libre de rang au moins deux. Dans les deux premiers cas il est
dit élémentaire. S’il est non élémentaire, il est a croissance exponentielle
(IG-H], chapitre 8, théoréme 37).

e) Il est automatique (voir [C-D-P], [C-E-H-P-T}).

1.8. GROUPES QUASI-CONVEXES

1.8.1. DEFINITION. Soit X un espace métrique géodésique propre,
et x un ¢élément de X. Un sous-groupe d’isométries de X est quasi-convexe,
s’il est proprement discontinu, et si I’orbite de x est un quasi-convexe de X.

On vérifie que la définition est indépendante du point x choisi. Notons
qu’un sous-groupe d’isométries proprement discontinu cocompact, est quasi-
convexe. La propreté de X permet de montrer:

1.8.2. PROPOSITION. Un groupe quasi-convexe I d’isométries de X,
est de type fini. De plus, si S est un systéeme symétrique de générateurs
de T, [Dapplication:

T, [[s) > X
g gx
est une quasi-isométrie.

Pour montrer cette proposition, il suffit d’exhiber un systéme de géné-
rateurs S adéquat. Si ’orbite de x est C-quasi-convexe, on vérifie que
I’ensemble:

S={a;eTl —{e}||x - ax|x<2C+ 1}

convient. |
Supposons maintenant X hyperbolique. Alors, par I’invariance de I’hyper-
bolicité par quasi-isométrie:

1.8.3. COROLLAIRE. Tout groupe quasi-convexe d’isométries d’un
espace hyperbolique, est hyperbolique.

Par l’invariance des quasi-convexes par quasi-isométries, on obtient la
caractérisation suivante des groupes quasi-convexes:

1.8.4. COROLLAIRE. Soit T' un sous-groupe d’isométries d’un espace
hyperboliqgue X. Les assertions suivantes sont équivalentes.

a) I' est quasi-convexe.
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b) T est de type fini, et quels que soient le systéme symétrique de géné-
rateurs S de T, et l’élément x de X, [lapplication

(ra | |S) - X
g 8&x
est une quasi-isométrie.
Rappelons que ’ensemble limite A d’un sous-groupe d’isométries I' de X
est défini de la maniere suivante:

Soit x € X, considérons I'{x} ’adhérence de l'orbite de x dans le
compact X U 0.X. Alors:

A=T{x}ndX.

Il est compact et indépendant du point x choisi.
Si maintenant T est quasi-convexe, alors d’aprés le théoréme 1.6.4, la
quasi-isométrie:

Ir-X
g 8x

s’étend en un plongement quasi-conforme, bi-Holder, de OI' dans 0.X.
Clairement il est indépendant du point x choisi, et son image est A. Dés lors:

1.8.5. COROLLAIRE. Le bord d’un groupe quasi-convexe d’isométries
d’un espace hyperbolique, et son ensemble limite, se correspondent par un
homéomorphisme quasi-conforme, bi-Holder, canonique.

Nous donnons une derniére caractérisation des groupes quasi-convexes
d’isométries d’un espace hyperbolique X. Celle-ci permet de faire le lien avec
les groupes convexes cocompacts de Thurston. Soit £ un sous-ensemble de 8.X.
Son enveloppe de Gromov, notée Q(E), est ’ensemble des (images des)
géodésiques dont les deux extrémités appartiennent a E. C’est un quasi-convexe
de X. Si I" est un sous-groupe d’isométries de X, ’enveloppe de Gromov de
son ensemble limite est I'-invariante; et on a (voir [C]):

1.8.6. PROPOSITION. I' est quasi-convexe si et seulement si il est
proprement discontinu et si Q(A)/I" est compact.

1.8.7. EXEMPLES. Soit I' un sous-groupe d’isométries de Hy. Rap-
pelons que I' est convexe cocompact, s’il est proprement discontinu, et s’il
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agit de maniére cocompacte sur 1’enveloppe convexe H(A) de son ensemble
limite. Il est quasi-convexe si et seulement si il est convexe cocompact.
En effet, Q(A) et H(A) sont a distance de Hausdorff finie. Une maniére de
le montrer est la suivante (voir [C]): Le convexe H(A) est la réunion
des n-simplexes idéaux de Hy, dont les arétes sont des géodésiques de O(A)
(c’est un théoréme de Carathéodory appliqué au modéle de Klein de Hy
(voir [Ber], théoréme 11.1.8.6)). Or tout point d’un n-simplexe de Hp
est a distance majorée par une constante universelle C(n), de ses arétes.

Signalons aussi que I' est convexe cocompact si et seulement si il est
geométriquement fini sans parabolique (une conséquence de la décomposition
de Margulis en parties fines et épaisses).

Enfin, tout groupe fuchsien de type fini est géométriquement fini
(voir [Bea], chapitre 10). Aussi, un groupe fuchsien est quasi-convexe si et
seulement si il est de type fini sans parabolique.

2. STRUCTURE CONFORME SUR LE BORD D’UN CAT (—1)-ESPACE

ENSEMBLE LIMITE ET FLOT GEODESIQUE ASSOCIES
A UNE ACTION QUASI-CONVEXE

2.0. INTRODUCTION

Soit X un CAT (- 1)-espace. Nous montrons que son bord admet une
structure conforme canonique, compatible avec sa structure quasi-conforme.
Plus précisément, nous construisons sur d.X une famille de métriques visuelles
{d,,x € X}, deux a deux conformes, qui ont la propriété que les isométries
de X soient des applications conformes de (0.X, d,).

Rappelons qu’une application f: (A4, d4) = (B, dg) est conforme, si quel
que soit ay € A, la limite lorsque a tend vers a, de

dg(f(a), f(ao))
ds(a, aop)

existe et est finie non nulle. On ’appellera le facteur conforme de f en aq.
Rappelons également que deux métriques d,, d, sur A, sont conformes, si
I’identité (A4, d;) — (A, d,) est conforme.

Soit maintenant une action isométrique quasi-convexe d’un groupe
hyperbolique I' sur un CAT(—1)-espace X. A cette action sont associés:

— L’ensemble limite de I" dans 8.X, muni de la structure conforme induite,
sur lequel agit I" par transformations conformes.
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— Un flot géodésique qui généralise le flot géodésique habituel du fibré
unitaire tangent a une variété riemannienne compacte (voir [G] et 2.8).

Nous montrons que la structure conforme de I’ensemble limite détermine
le flot géodésique et inversement. Précisons ceci:

Supposons que I' agisse par isométries de maniére quasi convexe, sur
deux CAT (- 1)-espaces X; et X,. Notons respectivement A;, Az, %, €,
les ensembles limites et les espaces du flot géodésique associés aux deux actions
de T. D’aprés 1.8.5, A, et A, se correspondent par un homéomorphisme
canonique. I'-équivariant et quasi conforme:

Q: Al = A2 ;
D’autre part, I’ensemble:
A; X A; — {diagonale}/T, i =1,2

s’identifie & #;, ’ensemble des orbites (orientées) du flot de ;. Donc
I’homéomorphisme I'-équivariant:

QxQ: A; X A, — {diagonale} = A, X A, — {diagonale}

donne par passage au quotient une bijection:
F: ﬁ] —> fz .

M. Gromov montre l’existence d’une équivalence d’orbite de &, sur %,
qui induit application F entre #; et Z,. (Une équivalence d’orbite est un
homéomorphisme envoyant orbites sur orbites sans préserver en général le
paramétrage). Nous montrons:

2.0.1. THEOREME. Les assertions suivantes sont équivalentes:
(1) L’homéomorphisme quasi-conforme € est conforme.

(i) L’équivalence d’orbite précédente est réalisée par une conjugaison des
flots géodésiques (une équivalence d’orbite préservant le paramétrage).

Sans doute ce théoreme est-il déja connu des spécialistes (U. Hamenstadt
fait des choses assez semblables dans [H]). Il ne semble pourtant pas avoir été
écrit sous cette forme, ni dans cette généralité.

Aux paragraphes 2.1, 2.2, 2.3, nous rappelons brievement les définitions
des fonctions de Busemann, de distances horosphériques et d’horosphéres. Les
paragraphes 2.4, 2.5, 2.6 sont consacrés a la construction de la structure
conforme de 0.X. Les paragraphes 2.7, 2.8, 2.9, 2.10 traitent de ’ensemble
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limite et du flot géodésique associés a une action isométrique, quasi-convexe,
d’un groupe hyperbolique sur X. On développe briévement la notion de mesure
conforme sur I’ensemble limite, et on rappelle une construction de la mesure
d’entropie maximale du flot géodésique. Au paragraphe 2.11, nous montrons
le théoreme 2.0.1.

2.1. FONCTIONS DE BUSEMANN
Soit r: [0, + o[ =& X un rayon géodésique, et x € X. D’aprés I’inégalité
triangulaire, la fonction
te|x —r@)| -t

est décroissante et minorée par — |x — r(0)|. Appelons b,(x) sa limite
en + oo. L’application b, de X dans R ainsi définie, est la fonction de
Busemann associée au rayon r.

2.2. DISTANCES HOROSPHERIQUES

Soit x,y e X, £ € 08X, et r: [0, + o[ > X un rayon géodésique d’extré-
mité €. La quantité
im |x—r()|[~|y-r@]|
t—= + o
est égale a b,(x) — b,(»). Elle est indépendante du rayon r d’extrémité &.
En effet si r’ est un autre rayon d’extrémité &, par comparaison avec Hi,
on a:

(2.2.0) lim d(r'(s),r) =0.

t— +

La limite Be(x,y) = lim |x — r(¢)| — |y — r(¢)| est appelée distance

t— +

horosphérique de x a y relativement a . Elle vérifie:

(2.2.1) B (x,y) = — B:(y, %)
(2.2.2) B(x,z) = Be(x,y) + Be(y, 2)
2.2.3) " Bi(x,y) < |x -]

avec égalité si et seulement si y € [xE).

2.3. HOROSPHERES

Considérons les ensembles de niveau de la fonction:

 feizP Bi(x,2) .
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D’aprés 2.2.2, ils sont indépendants de x. Plus précisément, I’ensemble de
niveau ¢ de f, est égal & I’ensemble de niveau ¢t — B¢ (x, y) de f,. Ce sont les
horosphéres en &.

La distance horosphérique s’exprime maintenant de la maniére sui-
vante: Soient H, : et H, : les horospheéres en &, passant par x et y. On
a d’apres 2.2.3:

IB?;(X,)’) ’ =d(x,H,)=dH,H, ).

Signalons aussi une autre définition des horospheéres, qui permet de les
relier aux sous-espaces fortement stables et fortement instables du flot
geodésique: Soit & € 0X. Pour x € X, notons r,:[0, + o[ > X le rayon
géodésique issu de x et d’extrémité £. Alors:

2.3.1) H.:={yeX| lim |r.(¢) — r,(t)| = 0}.

t— +

Notons que les deux définitions coincident, grace a 2.2.0.

2.4. PRODUIT DE GROMOV DE DEUX ELEMENTS DE 86X

Soit x, y, z trois points de X. Rappelons que le produit de Gromov de y, z
relativement a x, est défini par (voir figure 0):

UlDx=53x-y|+|x-z|-1]y -2z

FIGURE 0
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Soit maintenant £, £’ deux points distincts de 8.X, x un point de X, et
p appartenant a (£&’). Suivant V. Kaimanovich [K], considérons I’expression:

%(B{;(X,p) + Bi'(x’p)) .

Elle est indépendante du point p choisi sur (££’). On I’appellera produit de
Gromov de & et £’ relativement & x, et on la notera (¢ | £'),. (Voir figure 1.)

FIGURE 1
Notons que
(2.4.1) (&)= (E"]€)x
(2.4.2) (E1€), = (E]E)x — 5 (Be(x, ) + B/ (x,))) .

Le lecteur vérifiera sans peine la proposition suivante:

2.4.3. PROPOSITION. Soit ye[xt) et y' e€[xf’). Le produit
de Gromov (y|y’). converge vers (§£|&’)., lorsque y et y' tendent
respectivement vers & et &’.

2.5. UNE FAMILLE DE METRIQUES VISUELLES SUR 00X

Soit x une origine dans X. Pour &, &’ € 0.X, définissons:

di(§,8) =eClEx si £ #E
d.(£,&%) = 0 sinon .
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2.5.1. THEOREME. d, est une métrique sur 0X.

2.5.2. Remarque. d, est une métrique visuelle de parameétres (x, e)
(voir 1.5.1). En effet, ’expression

[(B]&7) — d(x, (EE)) |

est majorée par une constante universelle (voir [G-H], chapitre 2, lemme 17).

Afin de montrer le théoréme, nous introduisons un angle de comparaison,
ou plutdt son sinus: Soit y, ¥y’ deux éléments de X — {x}. Soit (xyy’) un
triangle de comparaison de (xyy") dans Hf{. Posons:

T
s
(2.5.3) ay(y,y') = siny 2y .

14

On peut également exprimer o,(y,y’) sans recourir a un triangle de
comparaison. En effet, d’aprés les formules de trigonométrie dans Hé,
on a:

W (chly =y |—=ch(x—y|—-]x—y D\
o (¥, ¥) = :

2sh|x — y|sh|x -y’

Le théoréme découlera des deux lemmes suivants:

2.5.4. LEMME. Soit S(x,r) la sphére de X, de centre x et de
rayon r. Sur S(x,r), r>0, o, estune métrique.

2.5.5. Preuve de 2.5.4. Seule I’inégalité triangulaire n’est pas triviale.
Soient donc y, z, f appartenant a S(x, r). D’aprés la relation 2.5.3, les valeurs
de o appartiennent a [0, 1]. Aussi, pour montrer ’inégalité triangulaire:

0x(V, 1) < 0x(D, 2) + 0x(3, 1),
supposons:
(1) ax(y,2) + a,(z, 1) < 1.
Soit X, y,z,f € HE, tels que:

a) (xyz) et (xzt) soient des triangles de comparaison de (xyz) et de (xz?).
b) (xz) sépare y et ¢ (voir figure 2).
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FIGURE 2
D’aprés 2.5.3, on a:
T TN
R4 . Zxt
@) 0 (3, 2) = Sin o, ay(z, £) = sin o .
2 2
L’hypothése (1) implique:
~ —
yxz +zxt <m,
de plus:
x-yl=Ix-z[=[x-1],

et (xz) sépare y et ¢. Donc le segment [y 7] coupe [xzZ] en un unique
point u. Soit u € [xz], le point correspondant & u. L’inégalité triangulaire
et I’inégalité CAT (— 1) donnent alors:

<|y—ul+|u-1tf

<y —ul+|u -t

=y -7].
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D’ou

ch|y—t|-ch(fx—y|=|x-tD\"?
“"(y’t)z( 2sh|x — y|sh(|x — ¢ )
<th—ﬂ—de—f%4f—ﬂum'
= 2sh|¥ — 7 |sh(|x — 7|

c’est-a-dire encore:
T

- yxt
(3) a(y,t) < sin —

P e
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Or yxt =yxz + yxit, et sin(a + b) < sina + sinb, pour a, b appartenant

a [O,g] . Donc (2) et (3) donnent:

0 (¥, 1) < 0e(1,2) + ax(z, 1) . [

2.5.6. LEMME. Soient y € [x§),y’ € [xt’), alors:
lim oa,(y,y") =d:(§, &) .

y—=£
yl_,gl

2.5.7. Preuve de 2.5.6. On a:

ch|y -y’ ch(lx —y|-|x—-y')

Zsh|x—y|sh|x—y’|— 2sh|x — y|sh|x -y’

ay(y,y) = (

Un calcul montre que:

ch(lx-y|-|x-»"]

= s (coth |x — y|coth|x —y'| - 1).

2sh|x — y|sh|x -y’

Cette expression tend vers 0 lorsque y — &, y" — £’. Par ailleurs:

ch|y -y
2sh|x — y|sh|x -y’

~ely=yl=lx-yl-lx-y'| = g-201¥"x ,

or d’apres la proposition 2.4.3, on a:

lim (y|y )= (E|&)x-
y—£
y e

D’ou le lemme. [

)1/2
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2.5.8. Preuve du théoréme 2.5.1. Seule I’inégalité triangulaire n’est pas
triviale. Elle résulte des lemmes 2.5.4 et 2.5.6. [

2.5.9. EXEMPLES.

a) Prenons X = Hy. Soit x le centre du modéle en boule. Alors:
/T

do(, £ = sin 2

7

est la moitié de la longueur du segment euclidien reliant & a £’ (voir figure 3).

FIGURE 3

Ce n’est pas la métrique naturelle sur 3.X, qui est la métrique angulaire.

, . . . o1
Néanmoins elle lui est conforme, de facteur conforme constant €gal a ;5.

b) Si X est un arbre réel:
dx(E.,, E:’) = e~ (E|E, ,

ou (£]&"), est la longueur du trajet que font ensemble les deux rayons
géodésiques issus de x et allant vers & et &' (voir figure 4).




FLOT GEODESIQUE D’UN CAT(-1)-ESPACE 89

S

Ficure 4

2.6. STRUCTURE CONFORME SUR 0.X

Nous montrons maintenant que la famille de métriques {d,,x € X},
définit une structure conforme sur 8.X. On a:

2.6.1. PROPOSITION. Soit x wune origine dans X et y,z deux
éléments de X. La fonction sur (0X,d,), définie par:

& Be(»,2)

est lipschitzienne.

2.6.2. Preuve. D’aprés les relations 2.2.1 et 2.2.2, on a:
By(y,2) = — Be(x,») + Be(x, 2) .
Aussi, il suffit de montrer que la fonction:
& Be(x, )

est lipschitzienne sur (00X, d,). D’apres la définition des métriques d, et
d’apres la relation 2.4.2, on a:

1

dy(5,8") = dx(§,8)e?

(Be (x,y) + By (x,))

ou €ncore

(1) Be(x,y) = 2logd,(§,8") — 2logd.(E,E") — Be:(x,y) .



90 M. BOURDON

Supposons que 3.X ne soit pas réduit a un point. Soit alors V un petit
voisinage compact de &, et £ un élément fixé en dehors de V. La fonction:

¢~ 2logd«(E,8)

est lipschitzienne sur (V,d,). Les métriques d, et d, étant des métriques
visuelles de paramétres respectifs (x,e) et (y,e), elles sont Lipschitz-
équivalentes (voir 1.5.3.b). Donc la fonction

&~ 2logd,(8,¢8")

est également lipschitzienne sur (V,d,). Dés lors, par la relation (1), la
fonction:

&HBé(x,y)

est lipschitzienne sur (V, d,). Maintenant la compacité de (0.X, d,) montre
qu’elle est lipschitzienne sur 8.X. [

2.6.3. COROLLAIRE.

a) Quels que soient les éléments x et y de X, les métriques d, et d,
sont conformes.

b) Soit g wune isométrie de X. Alors g est une application conforme
de (0X,d,), dont le facteur conforme en E est:

|gl(i) |x —_ eBé(x,g—lx) .
2.6.4. Preuve:

a) D’aprés la relation 2.4.2 et la définition des métriques d,, on a:

L (Be ) + Ber ()

dy(§,8') =dx(§,8)e?

Donc la proposition 2.6.1 donne:

HEE) |

dx(§,87) &'°

ce qui montre que d, et d, sont conformes.

b) Puisque g est une isométrie de X, on a:
(88188 = (§]&)g-1x -
Donc:
d. (88, 88"} = dg-1:(E, )

et la fin de la preuve est identique au (a). [
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2.6.5. EXEMPLES.

a) Prenons X = Hj et x le centre du modéle en boule. Le groupe Isom (Hg)
agit par transformations conformes sur la sphere S” munie de la métrique
euclidienne. Notons | g"(£) | le facteur conforme en & d’un clément g
de Isom (Hg). D’aprés ’exemple 2.5.9(a) on a:

le’(&) “ = ‘g'(&) | = eBelx,g71x)

b) Prenons X = H¢ et normalisons la métrique afin que sa courbure soit
comprise entre —4 et — 1. Soit x le centre du modéle en boule.

Le groupe Isom(HZ) laisse invariant le champ d’hyperplans {P:,€ € S},
défini par:

Pe={ueTS"1'; h(§,u) =0}

ou A est la forme hermitienne de C”:

n
h(En u) = Z Fﬁil_li .
i=1
Il agit par transformations conformes sur {P;,& € S?"~!} muni de la
métrique euclidienne. Notons | g’(€) | le facteur conforme sur P d’un
élément g de Isom (H¢). Nous allons voir qu’a nouveau:

lg' (&) [ = ePete™ = | g"(8) | -

Pour ce faire, ramenons-nous a I’exemple a) par un argument de
D. Sullivan ([Su], p. 176). Observons tout d’abord que || g’(§) || ne dépend que
de g~ 'x. En effet, si & € [som (H) vérifie A~ 'x = g~ 'x, alors la composée
g o h~! fixe x le centre du modele en boule, donc g © A~! appartient a
U(n) et:

le'@ I =1rE].

Choisissons donc judicieusement 4. Notons y Dintersection de [’horo-
sphére H;, basée en &, contenant g~!x, avec la géodésique (x£). Le stabi-
lisateur de H dans Isom (H¢) agit transitivement sur H;, de plus le facteur

conforme de ses €léments en Py est 1. Soit p un élément de Stab(H),
vérifiant

p(g~'x)=y.

Soit aussi une copie de Hy contenant la géodésique (x&). L’espace tangent
a son bord en ¢ est contenu dans Py . Soit # un élément de Isom (H{) qui fixe
cette copie et envoie y sur x.
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D’apres ’exemple (a), on a:
[£/(E) | = eBexn) = eBexig='n)
Par ailleurs, la composée A = t o p vérifie h—1x = g~ 1x, d’ou:

le' @ 1= 1@ 1o/ | =@ | = estnen

2.7. MESURES CONFORMES SUR L’ENSEMBLE LIMITE D’UN GROUPE QUASI-
CONVEXE

Soit I' un groupe quasi-convexe d’isométries de X (voir 1.8), non
¢lémentaire. Son ensemble limite A hérite de la structure conforme de 8.X.
Notons p(x, y, &) le facteur conforme en & € A, de 1’application identité
de (A, d,) sur (A, d,). D’aprés le corollaire 2.6.3 (ou plutdt sa preuve),
on a:

(2.7.1) plx, y, &) =eBexn) |

D’autre part, d’apres le corollaire 2.6.3, I agit par transformations conformes
sur (A, d,). Le facteur conforme de g e I' en &, est:

(2.7.2) g’ (E) |x=p(x, g7 'x, &) .

Comme dans le cas des groupes convexes cocompacts d’isométries
de Hg, on définit la notion de mesure a-conforme sur A (voir [Su], [N],
et [C] pour une notion analogue sur les espaces hyperboliques généraux):

La collection de mesures {u,,x € X} est une mesure o-conforme,
si pour tout x € X, u, est finie non nulle, de support inclus dans A, et si
pour tout x,ye X et geI:

(2.7.3) wy = [p(x,», )] 1,
g*U'xz Wg-1x = lg’ ;IJ.X .

La théorie des mesures conformes est essentiellement la méme que pour les
groupes convexes cocompacts de Hy. La seule différence est qu’une boule
de A n’est pas en général une ombre. Néanmoins elle en est presque une
d’aprés 1.6.2. Soit © la dimension de Hausdorff de (A, d,). Soit v, la
t-mesure de Hausdorff de (A, d,). On a:

2.7.4. THEOREME. La collection {v,,xe X} est une t-mesure
conforme. De plus, toute mesure conforme est une t-mesure conforme,
égale a une constante prées a {v,,x € X}.

De plus:
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2.7.5. THEOREME.

a) La dimension T est égale au taux de croissance de T dans X.
C’est-a-dire:

— 1
1= lim —log#{gel||x—gx|x<n}.
n—+o N
b) La v,-mesure d’une boule de (A, d,), est proportionnelle a son rayon
d la puissance T. Autrement dit: il existe une constante C, > 1, telle que
pour toute boule B(&,r) centrée sur A, on ait:

C;'r'< v (B(§, 1) < Curt.

Rappelons les principales étapes de la démonstration de ces résultats:

] ny
Soit ap = lim —log#{geT||x — gx|x < n}.S.J. Patterson a exhibé

n— +
une mesure aoy-conforme (voir par exemple [Su], p. 175). D’autre part
d’aprés D. Sullivan, si {p,,x € X} est une a-mesure conforme, alors la
i, mesure d’une boule de A est proportionnelle a son rayon a la puissance o
(c’est le lemme de I’ombre [Su], p. 180). Dés lors par un principe général, o
(et en particulier oy) est égal a 1, les mesures u, et v, sont absolument
continues ’une par rapport a ’autre et leurs densités sont bornées. Ainsi on
obtient 2.7.5. Maintenant puisque v, est finie, {v,, x € X} est une T-mesure
conforme (voir 2.6.3). Deux t-mesures conformes absolument continues 1’une

par rapport a l’autre sont égales (voir [Su], p. 181). Le théoréme 2.7.4
en découle.

2.8. FLOT GEODESIQUE ASSOCIE A UNE ACTION QUASI-CONVEXE

Soit X un CAT (—1)-espace, sur lequel agit I" par isométrie de maniére
quasi-convexe. Notons A I’ensemble limite de I" dans 8.X . Définissons GA

I’ensemble des géodésiques (paramétrées) de X, dont les extrémités
appartiennent a A:

GA = {y: R — X isométries avec y(— ®) € A, y(+ ®) e A}.

Et €quipons-le de la métrique suivante:

ly — v’

e e~ Il
GA:§ ly() =y (8) |x 5 dt .

— o

La topologie associée est celle de la convergence uniforme sur les compacts.
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En effet, on a:

2.8.1. PROPOSITION. Quel que soit T > 0, alors:

e T sup |y(®) -7 @I|x<|y -7 |oa

te[-T,T]
< sup |y —y'(D)|x+2eT.
te[-T,T)
2.8.2. Preuve. L’inégalité de droite est un simple calcul. L’inégalité
de gauche provient de 1’inégalité de Jensen appliquée a la fonction convexe
(voir 1.3):

iy — v (@) ]x. 0O

Clairement, le groupe I' agit par isométries sur (GA, | |g») de maniére
proprement discontinue. L’espace métrique quotient:

%€ =GA/T

est I’espace du flot géodésique, associé a la paire (X, I'). Notons que % est
compact. En effet, I" est quasi-convexe, donc le quotient de I’enveloppe
de Gromov de A par I' est compact (voir 1.8.6).

Le flot géodésique de GA est le groupe a un paramétre d’homéo-
morphisme {®;, T € R}, provenant de ’action naturelle de R sur GA. Il est
défini par:

(2.8.3) ®r(y) =vr, avec yvr(f)=yv(+7T).
Remarquons que pour tout Te R, g eI, et y € GA:
(2.8.4) @r(gy) =897 (v).

Le flot géodésique de ¥ est le groupe a un parametre d’homéomorphismes,
induit sur % par la relation 2.8.4. On le notera encore {®7, T € R}.

Par analogie aux flots d’Anosov, on définit les sous-ensembles fortement
stables et fortement instables de (GA, ®7). En vy € GA, ils sont respec-
tivement définis par:

Wss(y) = {n e GA||®r(n) — Or(y) |GA::O}

wus(y) Z{Tl e GA||®_r(M) — ©_7(Y) |6a ::0} ‘

Ils forment un feuilletage ®,-invariant de GA. D’aprés 2.3.1, ils sont liés
aux horospheéres de la maniére suivante:




FLOT GEODESIQUE D’UN CAT(-1)-ESPACE 95

wss(y) = {n € GA|Nn(0) € Hy@),y(+ )N+ ) = y(+ o)}
wuu(y) = {n e GA|Nn(0) € Hy),y(- =), N(— ) = y(— )} .

Observons qu’ils sont canoniquement homéomorphes a A privé d’un point.
On définit les sous-ensembles fortement stables et instables de (%, ®r) par:

(2.8.5)

2.8.6. DEFINITION. Soit w la projection de GA sur &, alors:

wss(n(y)) = m(W*(y))
W (n(y)) = (W (y)) .
Le sous-ensemble faiblement stable (resp. instable) de GA en vy, est la

réunion des sous-ensembles fortement stables (resp. instables), le long de
I’orbite de y sous ® ;. En d’autres termes:

Ws(y) = U Ws(@r(y)) ={neGA|[n(+ ) =y(+x)}

TeR

wey) = U W (@r(y)) = {n e GA[n(= ) = y(- »)}.

TeR

De méme, sont définis les sous-ensembles faiblement stables et instables de Z.
D’apres la définition 2.8.6, ils sont correspondance avec ceux de GA, via la
projection de GA sur %.

2.9. LE PARAMETRAGE DE HOPF DE (%, ®1)

Choisissons une origine x dans X. Soit A la diagonale de A X A. On définit
une application de (A X A — A) X R dans GA, de la maniére suivante: a

w

£_

FIGURE 5



96 M. BOURDON
I’élément (£_,&,,7) de (A X A — A) X R, associons I’unique élément vy
de GA vérifiant (voir figure 5):

(2.9.1) V(=) =&_,y(+®) =E&,,B (x,7(0) =1.

Le lecteur vérifiera aisément que [’application ainsi définie est un
homéomorphisme. Notons que dans ces coordonnées @ s’écrit:

(292) (DT(a—a‘t3+st):((ta—)a+>t+T)'

Notons également que les sous-ensembles fortement stables du flot ont pour
coordonnées (voir 2.8.5):

(293) {(é—)&+>t)> E.v— EA—{§+}}
Par ailleurs, en coordonnées 1’action de I' s’écrit:
(2.9.4) g(&_,8.,1) =(gt_,g8,,t— B¢, (x,g7'%).

Aussi, on obtient un homéomorphisme:
(2.9.5) AXA-ANxXR/.—> %

en définissant la relation d’équivalence suivante sur (A X A — A) X R:

(&—:g+:t)~(&’—>él+at’)

si et seulement si, il existe g e I tel que:

&,— :ga-—’a:— :g&+>t,:t_Bé+(X9g_1x) .

2.10. MESURE D’ENTROPIE MAXIMALE

On rappelle ici une construction de la mesure d’entropie maximale du flot
géodésique, due a D. Sullivan ([Su], [Su2]), dans le cas des groupes convexes
cocompacts d’isométries de Hy, puis généralisée par V. Kaimanovich [K].

Soit x un élément de X, et soit respectivement T et v, la dimension et
la mesure de Hausdorff de (A, d,) (voir 2.7). La mesure:

Ve XV
[d.(&, &%

est une mesure de Radon sur A X A — A. Elle est indépendante de x et
I'-invariante. En effet {v,,v € X} est une mesure t-conforme (voir 2.7.4),
de plus d’aprés 2.4.2 et 2.7.1:

dy(§,8') = dx(§,8") [p(x, 2, &) p(x,», )] .

(2.10.1) n
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Le paramétrage de Hopf permet d’identifier GA a (A X A — A) X R,
Soit alors m la mesure sur GA définie par:

m=u X dt.

C’est une mesure de Radon. I'-invariante et ®,-invariante. La mesure m,
restriction de m au compact &, (considéré comme un domaine fondamental
de " dans GA), est finie et ®r-invariante. On a:

2.10.2. THEOREME. ®; est ergodigue sur (%, m).

La preuve de ce théoréme est mot pour mot la preuve classique de
Hopf [Ho]. Le point essentiel est que p s’écrive comme un produit de deux
mesures sur A.

Clairement, ’ergodicité de ®; sur (&, m) est équivalente a celle de T’
sur (AX A—A,u). Puisque p et v, X v, sont absolument continues,
Iergodicité de T sur (A X A — A, p) entraine ’ergodicité de T sur (A, v,).
D’ou,

2.10.3. COROLLAIRE. L’actionde T estergodique sur (A X A — A, p)
et sur (A, vy).

Notons respectivement 4 et 4,,, ’entropie topologique de ®; et I’entropie
mesurable de (®7,m). Elles se calculent comme dans le cas convexe
cocompact (voir [Su2], p. 275-276, [K]). On obtient:

2.10.4. THEOREME. h = h, =1. Ainsi m maximise [’entropie
mesurable.

2.11. PREUVE DU THEOREME 2.0.1.

Nous renvoyons a lintroduction pour les notations. Nous montrons
d’abord deux lemmes:

Soient x, X, des origines respectivement de X; et X,. Notons d, et d,
les métriques d,, et dy, sur Ay et A,.

2.11.1. LEMME. Supposons que [l’application Q: Ay, dy) (A, dy)
soit conforme. Alors, son facteur conforme ® est continu sur A,

2.11.2. Preuve de 2.11.1. Puisque Q est conforme, les ensembles
limites A; et A, ont méme dimension de Hausdorff 1. De plus, en notant v,
et v, les T-mesures de Hausdorff de (A;, d,) et (Ay,d,), on a:

(1) Q*v, = @Tvy.
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Soit p; et p, les mesures sur A; X Ay — A et A, X A, — A, définies
par la relation 2.10.1. D’aprés 1’égalité (1), la mesure:

(Q X Q)*u,

est absolument continue par rapport a p;. De plus, p, est I'-invariante
et Q est I'-équivariant, donc (Q x Q)*pu, est I'-invariante. Alors, puisque
I’action de T est ergodique sur (A; X A; — A, ;) (corollaire 2.10.3), les
mesures (2 X Q)*u, et u; sont égales a une constante prés. Donc, a une
constante pres leurs densités par rapport a v; X v; sont presque siirement
égales. D’ou v; X v;-presque sirement:

0 ()™ (&) Cste

[di(8,EN]%  [da(Q(E), QEN]>’

soit encore

[d>(Q(8), Q(EN)]? = (Cste) " (§) @ (§") [di(E, E1)]* .

L’application Q:(A;,d;) = (A,,d,) étant continue, o P’est également.
Notons qu’en faisant tendre &’ vers £, on trouve Cste = 1. [

Soit maintenant s; ’involution de GA; définie par:

si(y) =v" avec vy'(t) =v(-1).

Par passage au quotient on obtient une involution de %; que ’on notera
encore s;.

2.11.3. LEMME. Supposons que [’homéomorphisme G: %~ &,
conjugue les flots géodésiques. Quitte a remplacer G par G = ®r 0 G
pour un certain réel T,, on peut supposer:

GOS1=S20G.

2.11.4. Preuve de 2.11.3. Soit T la fonction sur %, dans R, définie
de la maniére suivante: Etant donné vy € %;, T(y) est Punique réel vérifiant:

(1) D7y (G @ Sl(Y)) =50 (I)T(Y)(G(Y)) .

La fonction 7 est continue et invariante par le flot de %,. Aussi elle est
constante (par D’ergodicité du flot sur (&, m,;); (théoréme 2.10.2)).
Notons T, la valeur constante de T, et G' I’application ® 1, © G. D’apres (1),
on a:

G,OSI=.5'20G,. D
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2.11.5. Preuve de 2.0.1. Montrons (i) = (ii).

Soit g e T. Notons respectivement | g’ |, et | g’ |,, le facteur conforme
de g sur (A;,d,;) et (A,, d,). En écrivant:

Qog=go0Q.
et en calculant le facteur conforme des deux membres, on obtient:

(1) (wog)lg 20 Qo .

Construisons maintenant notre conjugaison: Paramétrons GA; et GA,
comme au paragraphe 2.9, en choisissant pour origines les points x; et x,.
Définissons une application G de GA; dans GA,, par:

G(E_,E,,1) = (Q(E),Q(E.), t — logw(E,)) .

D’aprés le lemme 2.11.1, o est continue, donc G est un homéomorphisme.
D’aprés la relation 2.9.2, il conjugue les flots de GA;, et GA,. De plus,
quel que soit g € I', il vérifie:

1=(|g’

(2) Gog=goG.
En effet, d’apres 2.9.4 on a:
Gog)(E_,E,,0)
=(Qog(§.),Q0g(&,),t— B, (x1,8 %) —logw © g(&.))
et
(g0 G (E-,E.,0)
= (80 Q(E-), g0 Q(E4), t —logw(E,) — Bae,) (X2, 87 'x2)) .
Or d’aprés le corollaire 2.6.3,

B£+(X1sg_lxl) = 10g|g'(§+) |1

et

2 © Q(Ew)) .

Ainsi I’égalité (2) provient de (1) et de la I'-équivariance de Q. Grace
a (2), on obtient une conjugaison des flots de €, et %,. Par construction,
elle induit ’application F entre &, et &, .

Bo (X2, 87 1x,) = log(| g’

Montrons (ii) = (i).
Soit G: &, = %, une conjugaison des flots, qui induit ’application F
entre 7, et #,. D’aprés le lemme 2.11.3, on peut supposer:
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(3) Gos =5,00G.

Relevons la conjugaison G & GA,; et GA, de la maniére suivante: Soit 7;
la projection de GA; sur %;. Pour y:R — X, appartenant a GA,, soit
v :R— X,, un élément de GA, vérifiant:

Y'(—®) = Q(y(—®)), v'(+x)=Q(y(+ x))

et

ma(y') = G(mi (7)) -

Notons que vy’ existe puisque G induit F entre #; et #,. De plus, si w;(Y)
n’appartient & aucune orbite périodique de &;, vy’ est unique. On obtient
ainsi une application

G: GA| — GA,
Yy
définie sauf sur les relevés des orbites périodiques, qui conjugue les flots,
vérifie:
GOomy=m,0 G.
ainsi que, d’apres ( 3):
4) , GOSI:SZOG.

Paramétrons GA,; et GA, comme au paragraphe 2.9, en choisissant les
points x; et x, comme origines. Puisque G est une conjugaison continue entre
les compacts &, et %,, elle est uniformément continue. Aussi elle envoie
sous-ensembles fortement stables sur sous-ensembles fortement stables.
D’aprés sa définition et la proposition 2.8.6, G a la méme propriété. Aussi,
d’aprés 2.9.3, G s’écrit en coordonnées: ‘ |

GE_, &, 1) = (QE), QL) t—logn(E,)),

pour une certaine fonction ® de A; dans ]0, + o[. Notons que ceci permet
de définir G sur GA, tout entier.

Comparons maintenant les métriques d; = d,, et d, = d,, sur A; et A;:
Soit € et £’ deux points distincts de A;, et p appartenant a (£¢”"). Soit vy
I’élément de GA,, vérifiant:

Y(—®) =&, y(+o)=8& e y@O0)=p.
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Les points G(y)(0) et f?(sl(y)) (0) appartiennent a la géodésique
(Q(E)Q(E")) de X,. D’apres (4) ils sont égaux. Notons-les g. En coor-
données on a:

Y= (‘tw &I’Bi'(xl ’p))

et
si(y) = (&', &, B:(x1,p)) -
D’ou:
G(v) = (Q(8), Q(E"), Ber(x1,p) — log (&)
et
G(s1(7)) = (Q(&"), (&), Br(x1,p) — log® (&)
donc

5)  Boey(x2,@) = Bae(x2, G(¥)(0)) = Be:(x1,p) — logw (&)
et
6)  Bow (X2, ) = Bag (x2, G(s1(1))(0)) = Be(x1,p) — logo(§) .
Ainsi (5) et (6) donnent:

[dx(Q(8), QEN]? = 0(E)o(E") [di (&, §)]> .

Puisque l’application Q de (A;,d;) sur (A,,d,) est continue, ® I’est
également. Alors, en faisant tendre &’ vers &, Q est conforme de facteur
conforme . [
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