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50 R. GEOGHEGAN AND A. NICAS

because G’ is normal in G. In particular, g4 (trans(C(g))) = n if g € G'.
There is a commutative diagram:

KyQG) =3 HH,(QG)
res l trans l

T
Ko(QG") = HH:(QG")
where res: Ko(QG) » Ko(QG’) is obtained by regarding a projective
QG module as a projective QG’ module; see [Bass] for details concerning
the finite index transfer.

Recall that HH,(QG) = HH,(QG)y ® HH,(QG) where HH,(QG)
is the direct sum of the summands HH,(QG)c() corresponding to
the conjugacy classes not represented by elements of H. By Schafer’s
theorem [Sch, p. 224] applied to the normal subgroup H C G, the image
of Ty:Ko(QG)—~ HH,(QG) lies in HHy(QG)y. Thus we can replace
HH,(QG) with HH,(QG)y in the above diagram and obtain the com-
mutative diagram:

K,(QG) = HH,QG)y 3 Q
resl transl an

KoQG) = HH,QG) 2 Q
(the right square commutes because H C G’ and because of the obser-
vation made above). Write HHy(QG)y = HHy(QG)cy ® HH,(QG) 4
where HH,(QG)y is the direct sum of the HH (QG)cy)’s over
C(g) € c(H) — {C(1)}; also, HHy(QG') = HHy(QG")c1y ® HH(QG')".
Then trans(HHo(QG)ca)) C HHy(QG')cuy and trans(HH,(QG)y
C HH,(QG’)'. By Lemma 8.6, G’ has the WBP over Q, i.e. the composite

T €y
Ky,(QG") = HH,(QG") = HH,(QG')' = Q is zero. The conclusion follows
from the above diagram. [

9. TRACE FORMULAE FOR HOMOLOGICAL INTERSECTIONS

The goal of this section is to prove a ‘“trace formula” (Theorem 9.13) for
the homological intersection of the graph of a map F: M X Y = M with the
graph of the projection map p: M X Y = M where Y is a closed oriented
manifold and M is a compact oriented manifold. This result will be
applied in §10 to complete the proof of Theorem 1.1.
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In what follows, all homology and cohomology groups will have
coefficients in a field F. Recall that we use Dold’s sign conventions [D,]
for cup, cap and cross products.

Let M be a compact n-dimensional manifold with boundary M.
Assume M is oriented over F with fundamental class [M] € H,(M,dM).
Let ¥V C M be an open collar of 9M and M’ = M — V. Let A C M X M be
the diagonal and let

(M X M,M' xdM) & (MxM,MxM-A) and
(M x M, M’ X 0M) & (M x M, M x dM)

be the inclusions. Since 7/ is a homotopy equivalence of pairs it induces
an isomorphism i*: H*(M X M, M X OM) > H*(M X M, M’ X 0M). We
define the diagonal cohomology class Dy € H*(M X M, M X OM) by
Dy = (i*)~1j*(Ty) where

Tye H MXM,MxM-—A)

is the Thom class of M (see [Sp, §6.2] where T), is called an orientation
for M).

There is a slant product H' (M X M, M X dM) ® H; (M, dM) 4 Hi-/(M),
see [MS, p. 125]. The reader should be aware that the sign conventions
for cup, cap and cross products used in [MS] coincide with those of [D;]
but differ from those of [Sp]. A straightforward adaptation of the proof
of [MS, Lemma 11.9], where the case OM = @ is treated, shows that
the fundamental class of M and the diagonal cohomology class of M are
related by:

PROPOSITION 9.1. Dy /[M]=1e H'(M). [

_ For each k >0, choose a basis {b]|j=1,..., N(k)} for H;(M). Let
{b¥|j=1,...,N(k)}, be the corresponding dual basis for H*(M), i.e.
(byf,b}) = 8;; (Kronecker delta). For k > 0, define d7 % € H"~* (M, dM),
j=1,..,N(k), by b =d}~*n [M]. The proof of [MS, Theorem 11.11]
carries over directly to show:

PROPOSITION 9.2. Dy = Y, (= Dk YN0 pk s grn=-k [
Let Y be a parameter space (Y is not required to be a manifold).

Let F:M X Y—~M be a map. For a € H,(Y), define f¥(a)eF by
F*(kaXa) = Exf\[=(/€1+Q)ff(J((l)bf{+q,
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The Kiinneth Theorem allows us to write

_ N(s) _
F*(bf)= Y Y bixo(kjs 1)
=1

s=0 1/

where w(k, j,s,l) € H*-5(Y).

LEMMA 9.3. fi(a) = (- Dok +q, ik, j), o).
Proof. We have:

ff{/((l) = <Z;ff+‘7,F*(bJ’.‘>< a)) = <F*(Z_7,l'(+q),bjl~c>< @)

k+gq NGs)
= Y X (bixwolk+gq,isD),bfxa)
s=0 [I=1
k+q N(s) B
= Y X (—D)*+a-9khin bt ok +q,i, 5 1) na)
s=0 /=1

= (- D% ok+q,i, k,j),oy. [

Let F: M X Y — M x M be defined by F(m,y) = (F(m,y), m) and let
p:M x Y — M be projection. We define the intersection invariant of F
to be the degree O homomorphism I (F):Hx(Y)—> Hy(M) given by
I(F)(a) = px (F*(Dy) N (IM] X o)) € H,(M) where o € H,(Y).

PROPOSITION 9.4. For any o € H,(Y),

_ Nk
IF) (@)= ) (=D* Y} binFe(b xa).
k>0 j=1

Proof. We have:
F*(b¥x di ™ )y =F*(b¥ud] " x1)

k  N(s) _
( Y Y bixo(kjs 1)) Uik x 1)

s=0 /=1

k  N(s) B
= Y Y (-DH*20-0(iudi ) xalkjs ).

s=0 /=1

Now (bfu d! *) n [M]=0bjn(d] " n[M]) =b;n b} and thus

F*(b¥ x d?™%) n (IM] x 0)
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= i Nf)(—1)““”(”"‘)(—1)““*‘)”((57ud7"‘)ﬂ[M]) X (@ (K, j,s,1) N )

s=0I[l=1

k  N(s)

= ¥ ¥ (- 1)&-9%(b5 N bY) X (0(k, j,5,1) N a).

s=0 /=1
Using Proposition 9.2 and the above identity, we obtain:

F*(Dy) N (IM] X a)

N(k) k N(s)

— Y (=DF Y ¥ Y (- DE9k B A b)) X (0K, j, s 1) na).

k=0 j=15s5s=0I=1

Now p.((0(k,j,s,1) na) X (b5 N bf)) = 0 unless k — s = q. Thus
ps(F*(Dy) N (IM] X @)

N(k) N(k-q)

= Y (- D* (- Dok, j, k—g,0),0)(bf N b)) .

k>0 j=1 I=1

Since Bf‘ ~?% = 0 for k — g < 0, we can rewrite the above expression using the
index variable r = kK — g as:

p«(F*(Dy) n (IM] X @)
(9.5

N(r+gq) N(r)

- Y Y X (- D<o(r+q,j,r ), a)(b; b9,

r=20 Jj=1 1=
Using Lemma 9.3,

N (k) N(k) N(k+q)

Y (-DF Y biaFbixa)= Y (=D Y Y fla)dfnbit)

k>0 j=1 k>0 j=1 i=1

N(k) N(k+q)

=YX (-DFY Y (-D¥olk+q, Lk j),a) bt .

k>0 ji=1 i=1
Clearly, this last expression is the same as (9.5). [l

We define the diagonal homology class Ay € H,(M X M,dM X M) by
Ay = Ax(IM]) where A is the diagonal map A(x) = (x, x) regarded as a
map of pairs A: (M,0M) > (M X M,0M x M).

The homology class A, can be expressed in terms of a basis for
homology and Poincaré duality. Let {b%}, {b¥} and {d7 ¥} be as
in the discussion preceding Proposition 9.4. Let af”k = b Jk N [M]
eH, ((M,0M), j =1, ..., N(k).

PROPOSITION 9.6. Ay = Y50 LMW (= D)k-bgh=k 5 pk [

i=1
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Proof. Without loss of generality, we can assume that M is connected.
Observe

di™ nal™ =d{" n (bfnIM]) = (d]TF U b})  [M]
(= DR B ATy [M]
= (— 1)(n—k)kl;f N (d?—km [M]) — (_ 1)(n~k)kl;j/f A b{c
— (_ 1)(n—k)k8ijb(1)

where &;; is Kronecker’s delta.
By the Kiinneth formula, we can write

_ N(k) wN(k) .k n—k k
Ay = Yisodi=1 Lj=1€;;a = Xb;

where cf-‘j € F. We have
A7 x by N Ay =d ' xb) n A(IM]) = A (A*(d" ' x b') A [M])
= A ((d]7'u b)) N [M))
= (= DDA ((bsud] ") N [M])
= (=)@ DAL (b (d) ™ N [M]))
= (=1)@-DIAL (b ADbLY = (-1)-D1§, % x b .
Now, (d" " 'x b’y n (a" % x b) = 0 whenever / # k and
@I 'x by (@ ' xbly = (~DIC-0@d  nalT) x (bin b))
= 8,;8,;b] x b .
It follows that ¢!, = (= 1)!»-0§,.. [
Up to sign, the diagonal homology and the diagonal cohomology classes
are Poincaré dual:
PROPOSITION 9.7. Dy n (M] X [M]) = (= 1)"Ayy,.

Proof. Observe that

(b¥x d?™%) n (IM] % IM]) = (= D@Dk (b~ [M]) X (d] "~ [M])
= (= 1)=Pkg]~* x b,

Using the formula for D), given by Proposition 9.2,
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N(k) _
Dy (Ml XM = ¥ (-DF Y (bf xdi ™) n(IM] x [M])

k>0 i=1
N(k)

= Y (= DF Y (- Dk X by
k=0 i=1
N(k)

— (=Y Y (= Dke-Rgl T x bf

k=0 i=1

— (= 1)"A, by Proposition 9.6. [

Until now Y has been an arbitrary parameter space. For what follows we
assume that Y is a closed g-dimensional manifold which is oriented over F.
Let [Y] € H,(Y) be the fundamental class. Define Gr(p):M X Y > M
X YXMand Gr(F):M X Y>> M X Y X M by Gr(p)(m,y) = (m,y, m)
and Gr(F)(m,y) = (m,y, F(m, y)). Define homology classes

A= Gr(p)s((M]X[Y]) € Hyr g(M X YXM,MXYx3M),
B =Gr(F)«((M] X [Y]) € Hyr g M X Y X M,0M X Y X M) .

We define the intersection product A e B € H,(M X Y x M) as follows. Let

S H'"MXYXMOIMXYXM)>H,, q(MXYXM,MXYX3IM)
Syt H'(MX YXM,MXYXOM)> H,,;,(MXYXM,0MXYXM)

be the Poincaré duality isomorphisms for the manifold triad (M X Y X M;
M X Y XOM,dM x Y X M) given by cap product with [M] x [Y] X [M].
Then

AeB=(8{'B)Ud;, ' (A)nI[M]x[Y]x[M].

Definition 9.8. The graph intersection invariant of F is 0'(F)
= (p))«(AeB)e H,(M) where p;:M X Y X M— M is projection to
the first M factor.

Remark 9.9. The graph intersection invariant of F can be obtained
geometrically using transversality. Suppose F has no fixed points on
OM x Y. Then the boundaries of the embedded submanifolds Gr(p)(M X Y)
CMxYxMand Gr(F)(M X Y) C M X Y X M are disjoint and so these
submanifolds may be made transverse via an ambient isotopy of the identity
which leaves a neighborhood of the boundary of M X Y X M (pointwise)
fixed. The set theoretic intersection of the perturbed submanifolds is a closed
orientable manifold of dimension g which we orient using the ‘““intersection
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orientation” taken in the order: the perturbed Gr(p) (Y X M) first followed
by the perturbed Gr(F)(Y X M). By Proposition 11.13 of [D,, § VIII], the
resulting oriented manifold is a cycle representing A e B. Projecting this cycle
to M via p; yields a representative of 0'(F).

The isomorphisms §; ' and 8, ' can be described explicitly using the
slant product. Let (Z;0,Z,0,Z) be a compact oriented manifold triad
and K = 00,Z = 00, Z. Since

(Z—-0,2,0,Z—-K)X(Z—-0,Z,0Z—-K)C(ZXZ,ZXZ~-A),
(Z—-0,2,0,Z-K)X(Z—-0,2,0,Z—-K)C(ZXZ,ZXZ~-ANA)
there are slant product pairings:
H"(Z><Z,Z><Z-A)®HJ-(Z—622,812~K)—/+H"—f'(Z—BIZ,BZZ—K)
H"(Z><Z,Z><Z—A)®Hj(Z—612,622—1()*/*H"‘f(Z—azZ,alZ—K)
By the existence of collars, the inclusions (Z —0,72,0,Z—-K) & (£,0,2)
and (Z-0,7Z,0,Z—-K) S (Z,0,7Z) are homotopy equivalences and so we
obtain pairings:
Hi(ZXZ,Z X Z—A)®Hj(Z,612)—/>H"—J'(Z,622) ,
H(ZXZ,ZXZ—-AN) ® H;(Z,0,7) —/>Hf—f(Z,61Z) .
Let m = dim Z. The inverse to the Poincaré duality isomorphisms

81:H"I(Z,0,Z) > H;(Z,8,Z), 8,(x)=xn([Z] x[Z])
8, H™=I(Z,0,Z) > H;(Z,8,Z), 8,(x) =xn ([Z] X [Z])

are explicitly given by §;'(y)=(-1)mm-NT,,, and &;'(y)
=(-1)mm=-NTy,,, where T, € H"(ZX Z,Z X Z — A) is the Thom class
of Z (see [MS, p. 135]).

PROPOSITION 9.10. 8°(F) = I(F)([Y]).

Proof. Without loss of generality, we may assume Y is connected.
Let S:M X M — M x M be the “interchange map”, i.e. S(x,y) = (», x).
Now S.([M]x [M])=(—1)"[M] x [M] and so by Proposition 9.7,
Ay = Dy 0 Sy (IM] x [M]) = S4(S*(Da) N (IM] X [M])). Hence S (Ay)
= S*(Dy) 0 ([M] x [M]). Using the inverse to the Poincaré duality
1somorphlsm we have TMxM/S,,< (AM) S* (D).

Define F = SoF. Then F=So F. Also note that p = pj o F where
pi:M X M— M is projection to the first factor. From the definition
of I(F),
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I(F)([Y]) = p« (F*(Dy) n (IM]1 X [Y])
= (P« Fx (F*S*@a) ([M x [Y1))
9.11) — (0« (S*(Dy) N Fx(IM] % [Y]))
= (0w (Tagscar/ Sx (Aag) N ([M] X [Y1))
= (075 (Tarsew 0 F (IM1 X [Y]) X Sk (A)

where p{’ is projection to the first “M” factor.
Let ""MXYXM—-MXxMxY and

I" " MXMXYXMXMX YoMXMXXMXMXYXY

be the “interchange maps” given by I'(m,»y, my) = (my,my,y) and
I(my,my,y, Mz, My, y') = (m,, my,ms, My, y,y"). Let I=1"0od xI).
Then I*(Taysxm X Ty) = Tarx yxm and
0'(F) = (p1)+ (67" (B) U 8; ' (A) N (IM] X [Y] X [M]))

= (p)+E7'B) 0 (851 (A) n (IM] x [Y] x [M])))

= (p)« (5, ' (B) N A)
(9.12) = (= 1) (p) s« (Trx yxu/ B) N A)

= (- l)qn(p?)*(TMx yxum O (A X B))

— (= D (D)L (I* (Tarx e X Ty) N (A X B))

= (=D (PD s (Tryxm X Ty N Ix(A X B))

where p} and p} = p] o I are projections to the first “M” factor. We have

I (A) = Gr(p)s (Y] X [M]) = Sx(Ay) X [Y]
I, (B) = Gr(F)« ([Y] X [M]) = Fy(IY] x [M]) X [¥] + B

where [yo] € Ho(Y) is represented by yoe Y and B is a finite
sum of the form (= Y,0;Xxu; with w;eH,(Y), n;>1, and
vie Hy q_n, (M X M,0M x M). 1t follows that:

I4+(A X B) = (-1 DS, (Ay) X ﬁ*([Y] X [M]) X [Y] X [yo]
+ L (=1 aammI S, (Ap) X0 X [Y]X ;.
Since Ty n ([Y] X u;) lies in homology of degree n; > 0,

(P s« (Trrnr X Ty) N (s (Dar) X 0; X [Y] X 1))
= (= D99 (PN (Trrsemr 0 (S (D) X 01)) X (Ty n ([Y] X u;)) =0.
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Using (9.12),

0'(F) = (= 1) (P) s« (Tarxne X Ty 0 I (A X B))

= (=19 (= 1)+ D (pH) o (Tarscnr X Ty) N (S (Aar) X Fr ([¥]
x [M1) X [¥] X [5]))

= (= 1D9(=1)9D s (Tarxae N Sk (Anr) X Fo ([Y] X [M])))
X (Ty N ([Y] X [}’o])))

= (O (Tarwar 0 (S5 (Anr) X Fi (1Y x [MD))) X (I¥6] X [¥o]))
= (D)5 (Tarsns O (S (D) X Fo ([Y] % [M])))
=I(F)(Y]) by ©.11). O

Combining Propositions 9.4 and 9.10 yields:

THEOREM 9.13 (Trace Formula). The graph intersection invariant is
given by:

N(k) _
0'F)= X (- Y binFe(byx[Y]). O
k>0 j=1
Remark. 1t is easy to check that Theorem 9.13 remains valid over a
principal ideal domain R in place of the coefficient field F, provided we
assume that Hy (M; R) is a free R-module.

10. PROOFS OF THEOREMS 1.1 AND 1.5

In this section we prove Theorems 1.1 and 1.5 which assert the equivalence,
under appropriate hypotheses, of the four definitions of the first order Euler
characteristic introduced in §1.

Proof of Theorem 1.1 (ii). Let M be a compact connected oriented PL or
smooth n-manifold with boundary (as well as being the underlying simplicial
complex of a compatible triangulation). Using Definition A;, we are to show
that y; (M) (y) = — 0(y); the case of other coefficient rings R will then
follow immediately. Fattening if necessary, assume n > 4.

Let J: M x I > M be a homotopy from id,, to a map j, such that the
graph of J|,, [%1] meets the graph of p|,, . [%1] transversely in

| x(M) | arcs; this can be achieved by classical techniques of cancelling
unnecessary pairs of fixed points. Note that j will then have precisely
| x, (M) | fixed points, all transverse and having the same fixed point index.
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