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propre (unitaire) a pour g, par exemple a e E +. L'endomorphisme u qui
échange les vecteurs e' et a et qui est nul sur l'orthogonal du plan (a,er) appartient

à ^ (si a appartient à E~, on remplace e' par e). De plus, S C G

est inclus dans l'hyperplan Kqi u ± Rö sur lequel cpx(^) est nul ou de signe

constant (même démonstration que dans le cas symplectique). On peut
donc construire à partir de u ou de — v un nouveau réseau g-extrême dont
l'ensemble des vecteurs minimaux S n Ker v est contenu dans le sous-espace o-
stable G n Ker v strictement contenu dans G (puisque a n'appartient pas
à Ker y), ce qui est contraire au caractère minimal de G.

8. Classification des réseaux isoduaux de petite dimension

Dans ce paragraphe on considère un élément g e 0(E), généralement tel

que g2 ± Id (et g^A ± Id), et l'on recherche les réseaux o-isoduaux
strictement extrêmes pour g. D'après le corollaire 4.9, le nombre 5" de

couples ±x de vecteurs minimaux d'un tel réseau est ^ dim(^fc) + 1,

puisque le groupe de Lie % est contenu dans le noyau du déterminant. Dans

les cas orthogonal et symplectique, on déduit du th. 7.4 les minorations
suivantes :

8.1. Proposition. Soit L un réseau g -isodual a -extrême.

(1) Si L est ^-orthogonalon a s ^ pq +1, où p et q sont les

multiplicités des valeurs propres +1 et —1 de c (p + q n).

(2) Si L est g -symplectique, on a s ^ m2 + m + 1 (n 2m).

Le cas de la dimension 2 est facile : les réseaux de déterminant 1 sont tous
isoduaux pour une rotation d'ordre 4, et les réseaux extrêmes sont semblables

à A2. (Du reste, on a 5 ^ 3 par 8.1.) Ceux qui sont isoduaux pour une autre
transformation sont semblables à Z2 ou à A2.

Les réseaux isoduaux de dimension 3 ont été décrits par Conway et Sloane

dans [C-S3], qui trouvent deux familles. L'une d'elle, qui correspond à une
rotation d'ordre 4, est formée de réseaux réductibles, cf. la fin du §4. L'autre
correspond au cas où ± g est une rotation d'angle n. Pour cette famille, il y
a un unique réseau o-extrême, le réseau ccc de [C-S3].

On retrouve ce résultat en utilisant la classification (au sens de la déf. 5.1,

appliquée à l'exemple 2.3) qui est faite dans [Ber]. On montre en effet
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([Ber],2.8) que les seules classes de réseaux de dimension 3 avec s(L)
s(L*) ^ 3 sont représentées (modulo similitudes) par les matrices

it 1 t j - 1/3 < t < 1/2 et | 2t — 1 1 - t\ 1/3 < t < 1/2

\t t 1/

On voit facilement que les réseaux correspondants sont normaux (et en fait
isoduaux) uniquement pour t 0 dans le premier cas (il s'agit alors de Z3),
et pour t ]/2—1 dans le second, ce qui correspond au réseau ccc.

Le but de la suite du § est d'obtenir une classification des réseaux isoduaux
de dimension 4 ayant beaucoup de vecteurs minimaux. Nous nous appuierons
sur la notion de réseau normal (déf. 6.5). Nous donnerons en passant des

résultats un tout petit peu plus généraux.

8.2. Théorème. Un réseau normal de dimension < 8 possédant une
section hyperplane critique (i.e. absolument extrême) est semblable à l'un des

réseaux de racines A2, D4, E8.

Démonstration. Soit L un tel réseau, et M une section hyperplane critique
de L, de norme N(L); son déterminant est donné par la formule

N(L)n ~ 1

det (M) -
y"-I n - 1

Le minimum de L* est atteint sur les vecteurs primitifs de L* orthogonaux
à M, et l'on a donc

jV(jL*)
det<M) 1 N(L) 1

det (L) det(L) ynn~_\

Le réseau L étant normal, la proposition 6.6 entraîne l'égalité

N(L*) N(L) det(L) ~2/n

En égalant ces deux expressions, on trouve la relation

Y (L)n~2 — Y" : I
•

Or, l'inégalité de Mordell (cf. [Cas], ch. X, §3) s'écrit

yn~2 < yn-\t n ^ Y n l '

Le réseau L réalise donc le maximum yn de l'invariant d'Hermite, et ce
dernier vérifie y"-2 ce qui, pour les dimensions pour lesquelles sa
valeur est connue, i.e. « < 8, ne se produit que pour n 2, n 4 et
n 8.
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8.3. Théorème. Soit L un réseau normal de dimension paire
n 2m, et soit M une section critique de dimension m de L, de même

norme que L. Alors, l'orthogonal M1- de M dans L* est critique et
de même norme que L*.

Dans le cas m 2, si & est une base de L formée de vecteurs
minimaux dont les m premiers engendrent M, les m derniers vecteurs
de sont minimaux et engendrent ML.

Démonstration. De façon générale, pour toute section M de tout
réseau L, on a det(M) det(T)det(ML). Dans le cas qui nous occupe,
compte tenu de la proposition 6.6, on a N(L*yn > et donc

y (ML)m det (M) N(ML)m N(L)m N{M1 )m
_

N(ML)m ^ ^ ^

y(M)m
~~

det (M1) N(M)m
~

N(M)m N(L*)m N(L*)m

puisque M réalise le maximum ym de l'invariant d'Hermite en dimension m,

l'inégalité précédente est une égalité, et l'on a donc y (M1) - y (M) ym

et N{ML) N(L*), ce qui démontre la première partie de l'énoncé.

Considérons maintenant la base & - (e\,..., en). Pour tout vecteur

minimal a' de L*, les composantes dans de x' sont les produits scalaires

x'. et, entiers bornés par (utiliser l'inégalité de Schwarz)

]/N{x')N{ei) ]/N(L*)N(L) ^y(L*)y(L) ^ yn < 2

et donc éléments de {0, ± 1}, quel que soit n < 8.

On applique ce qui précède à un vecteur x' e ML et à ses composantes
dans la base (e* + l, e*) de M1.

Pour m 2, M1- est semblable à A2 et possède donc 3 couples de vecteurs

minimaux. Mais x e* + e* et y e* — e* ne peuvent être simultanément
minimaux («méthode des déterminants caractéristiques» de Korkine et

Zolotareff: (x,y) et (e*,e*) doivent engendrer le même réseau), donc
e* et e* sont minimaux.

Nous passons maintenant au cas de la dimension n — 4. On utilise la
classification de [B-MJ, §5, où les réseaux engendrés par leurs vecteurs minimaux
sont répartis en 18 classes (au sens du §5) a4,a5, b5, a9, b9, al0, ai2,
les deux dernières étant formées des classes de similitude de A 4 et de D4 ; la
classe a9 est décrite dans l'exemple 6.4,(2).

8.4. Théorème. Les réseaux normaux de dimension 4 possédant au

moins 7 couples de vecteurs minimaux sont les réseaux de la classe a9 ou

sont semblables à D4.
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8.5. Corollaire. Les réseaux isoduaux symplectiques o-extrêmes sont
les réseaux semblables à DA.

Démonstration de 8.5. On sait (prop. 8.1) qu'un tel réseau possède au

moins 7 couples de vecteurs minimaux, et, d'après l'exemple 6.4,(2), l'invariant

d'Hermite ne possède pas de maximum relatif sur la classe a9. D

Démonstration de 8.4. Le cas d'un réseau possédant une section hyperplane

critique de même norme résulte du th. 8.2, ce qui résoud le cas des classes

dq, b%, b9, aio et a \2.

Il reste à examiner les réseaux L de l'une des classes aq, bq, c7, as.
Le cas de la classe bq est facile. Elle est caractérisée par l'existence de

7 vecteurs minimaux répartis dans 3 réseaux A2 ayant un vecteur minimal e

en commun. D'après le th. 8.3, le réseau orthogonal à e dans L* possède
3 sections minimales de type A2, et donc 6 vecteurs minimaux. Il est donc
semblable à A3, et l'on conclut par le th. 8.2 appliqué à L*.

Pour traiter les trois derniers cas, nous avons utilisé le théorème 8.3

complété par des calculs explicites de matrices adjointes, conduits en s'aidant
du système PARI. Nous illustrons le procédé en traitant ci-dessous le cas de

la classe a8.
Il résulte de [B-Ml], §5, que ces réseaux peuvent être définis dans une

base (el9e2,e$>e4) convenable par les matrices de Gram ci-dessous:

On trouve N(e*) - N(e*) 2(u - t) (1 - u - t), expression qui
doit être nulle puisque {e2,eA) est un réseau de type A2, cf. th. 8.3. Si
u - 1 - L on obtient des matrices représentant a9. Si u t, on trouve
2 N(e{ — e\ e* (2 — t) (21 - 1) et \ N(e*) + e* e* 3 (2 — t), expressions

qui ne peuvent s'annuler que pour t \ | 11 ne peut pas dépasser la
valeur 1), cas dans lequel on obtient le réseau L24 e a9.

8.6. Remarque. Nous avons recherché les réseaux normaux dans les
classes c6 et d§ (ce qui couvre tous les cas où il y a deux sections minimales
de type A2). La classe c6 n'en contient pas. La classe d6 contient une famille
à deux paramètres de réseaux normaux, qui sont en fait isoduaux de type
symplectique. Le bord de cette famille est la classe â~9 a9 u al2. Elle
contient des sous-variétés de dimension 1 formées de réseaux isoduaux de type
orthogonal. En tant que réseaux o-isoduaux de type orthogonal, L\ et DA
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sont o-extrêmes pour chacun des systèmes de valeurs propres possibles. Ce
sont probablement les seuls.

Nous avons également recherché les réseaux o-isoduaux pour un o de
valeurs propres (+1, +1, -1, -1) admettant une base de vecteurs minimaux
conforme au lemme 7.1. Outre la famille ci-dessus, on trouve une famille à
deux paramètres à la fois symplectique et orthogonale avec s 4. Son bord
est contenu dans l'adhérence de la première famille.

Voici des matrices de Gram pour chacune de ces deux familles
(renormalisées à la norme 2):

2 -l X y \I 2 0 t « Ï

-1 2 y -x-y 1 0 2 u -1
X y 2 -1 I1 t u 2 0

y -x-y -i 2 I \u -t 0 2 1
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