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bornés: on a en effet N(ef) ^ ^ ^ (voir [Ber], 2.7), et N(ej)N(L)n~l
^ Kn àQt{L) par choix de la base «réduite» d'où N(e*)N(ej) ^

^ K2n. La démonstration s'achève comme ci-dessus, en remarquant
que si les deux bases & et u(ß) de E fournissent la même représentation
intégrale g i-> Bg du groupe G, le changement de base u appartient au
commutant ^ de G (comme on a g(u(ej)) (w(£/))* g(u(ej)) iu~l(ef)

(u~lgu)(ej). e*, la condition sur w s'écrit u~lgu g pour tout
g e G).

Les G-réseaux dont les vecteurs minimaux engendrent l'espace se
répartissent donc en un nombre fini de G-classes. C'est en particulier le cas des

réseaux G-parfaits ([B-M2], prop. 2.9). Comme de plus une G-classe contient

au plus un réseau G-parfait ([B-M2], prop. 2.9), on retrouve ainsi le résultat
de finitude de [Ja].

7. Réseaux isoduaux orthogonaux et symplectiques

On conserve les notations du § précédent. On note g un élément de O(E).
On rappelle que bQ désigne la forme bilinéaire entière (x, y) x oy, et

qu'un réseau g-isodual est dit orthogonal (resp. symplectique) si ba est

symétrique (resp. alternée). Il revient au même de dire que g2 a pour carré + Id
(resp. - Id).

Le cas où g ± Id est particulier: les réseaux g-isoduaux sont les réseaux

unimodulaires, et il est facile de vérifier que les composantes connexes de

sont les classes d'isométrie de réseaux unimodulaires (cf. ci-dessous). Tous sont
donc strictement o-extrêmes. Sauf mention du contraire, nous supposons
g gfc ± Id.

Nous allons tout d'abord examiner la structure de l'espace .fG. Pour ce

faire, nous rappelons deux résultats sur les formes bilinéaires entières de

déterminant inversible. Le premier, dû à Milnor et Serre, est démontré dans [Se],
le second (beaucoup plus facile) dans [M-H].

Rappelons qu'un Z-module quadratique (sans torsion, de type fini) (M, b)
est dit pair si b(x,x) ne prend que des valeurs paires, et impair dans le cas

contraire. Etant donné un réseau M, on note M+ (resp. M-) le module
quadratique M muni de la forme bilinéaire (x, y) u» x y (resp. (x, y) - x y).
On note U le module quadratique (Z2, 2xj x2). Enfin, pour p,q ^ 0 entiers,

pM + qN désigne la somme orthogonale de p copies de M et de q copies
de N.
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7.1. Lemme. Un Z-module quadratique indéfini impair (resp. pair) est

isométrique à une somme pZ+ + qZ~ (resp. pU + qE% ou pU + qE%).

Sa signature (r,s) est égale à (p,q) (resp. à (p + 8q,p) ou (p,p + 8q)).

Un tel module est caractérisé à isométrie près par son type (pair ou

impair) et sa signature, et il existe si et seulement si, dans le cas pair, on

a s r mod 8.

7.2. Lemme. Soit A un anneau principal, et soit M un A-module

de type fini, sans torsion, de rang n, muni d'une forme alternée de

déterminant inversible dans A. Alors, n est pair, soit n 2m, et M est

isométrique à une somme orthogonale de m copies de A2 muni de la

forme x1y2~x2yi.
Nous en venons maintenant aux réseaux o-isoduaux orthogonaux ou

symplectiques, en supposant o ± Id, ce qui assure dans le premier cas que
la forme ba est indéfinie.

7.3. Théorème. Soit o e 0(E) de carré ± Id, o ^ ± Id. Alors,
la famille ya est composée d'une unique orbite sous G0 (représentée

par Zn muni d'un automorphisme convenable), sauf dans le cas des

réseaux orthogonaux de dimension paire, où il existe une seconde orbite
représentée par des réseaux Zn ou (selon la signature de ba).

Démonstration. Comme G0 est le groupe orthogonal de ba, deux

réseaux appartiennent à la même orbite sous Ga si et seulement si les formes
ba qui leur sont associées sont isométriques. Les lemmes 7.1 et 7.2 montrent
qu'il y a selon les cas au plus une ou deux orbites, et les exemples de Z" et

de D*m (cf. ex. 6.4, (3)) montrent que ces orbites existent effectivement.

La proposition ci-dessous décrit les espaces W dans les cas orthogonaux
et symplectiques. Sa démonstration découle tout de suite de la définition
de F (prop. 6.1, (4)).

7.4. Proposition.
(1) Dans le cas orthogonal, soit E E+ ± E~ la décomposition

de E en sous-espaces propres pour o. On a alors

F {u e Ends(E) | u(£ + C E~ et v(E~) C E+ }

et donc dim W dimi?+ dimi?"
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(2) Dans le cas symplectique, soit une base orthonormée de E dans

laquelle la matrice de Gg est formée de blocs diagonaux de la

l 0 l\forme Alors, les éléments de W sont ceux qui ont pour\-i oj
les matrices symétriques formées de blocs de la forme

; la dimension de W est donc m2 y m (on a posé

matrices les matrices symétriques formées de blocs de la forme

f\b -a)
n 2m).

[Dans le cas symplectique, la dimension du commutant de g dans

End5(is) est m2 ([B-M2], prop. 3.3), et l'on a bien _ mi _ mi + m ^

7.5. Remarque. Lorsque g ± Id, la dimension de W> donc aussi

celle de la sous-variété des automorphismes symétriques de G0, est nulle. Il
en résulte que les composantes connexes de sont les classes d'isométrie de

réseaux unimodulaires. La classification a été faite jusqu'à la dimension 25,

cf. [C-S], ch. 16-18 et les références qui s'y trouvent. Le groupe Gg est dans

ce cas le groupe orthogonal 0(E), qui a deux composantes connexes. Le
nombre d'orbites de 3Fa sous Gg tend vers l'infini avec la dimension de E, ce

qui montre que l'hypothèse «g y ± Id» ne peut pas être supprimée de l'énoncé
du th. 7.3.

7.6. Théorème. Dans le cas orthogonal (avec g ^ ± Id) ou symplectique,

les réseaux g-extrêmes sont strictement extrêmes, et leurs vecteurs

minimaux engendrent l'espace E.

Démonstration. Compte tenu du th. 4.5,(ii), il suffit de prouver que,
si Le JLj est un réseau g-extrême, l'ensemble S de ses vecteurs minimaux

engendre E. La démonstration se fera par l'absurde en utilisant le fait que,
si v g ^ est tel que (px(u) ^ 0 pour tout x e S, il existe un réseau extrême (de

la forme (exp(?#/2)) (L) pour t > 0 assez petit) dont l'ensemble des vecteurs

minimaux est S n Ker v (cf. 4.6-4.8). Dans tous les cas, on se ramène au cas

où les vecteurs minimaux sont contenus dans un sous-espace g-stable de E
de codimension ^ 2.

Commençons par le cas symplectique. Si S est contenu dans un hyperplan

H de E, soit F H n g (H) le sous-espace g-stable maximal de H. Dans une
base -A convenable de P F1, la matrice de la restriction de g à P est

On considère l'endomorphisme v e W nul sur F et dont la
' ')•
i o!

(0 1\
restriction à P a pour matrice | dans x/i. Alors (px(^) est nul ou
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de signe constant sur Phyperplan H, a fortiori sur S. En effet, soit

x Xe + y, X e R, y e F, l'écriture de x e H selon la décomposition

H Re ± F. On a (pxO) v(x) x+(car

D(e). y e u(y) 0); ainsi, quitte à remplacer v par - u, on peut supposer

<P*0>) > 0 pour tout xe H. Il existe donc un réseau o-extrême dont

l'ensemble des vecteurs minimaux est Ker u n S contenu dans F. On peut donc

supposer désormais S contenu dans F. Soit alors K un hyperplan de F disjoint
de S, G K n o(K) le sous-espace stable correspondant, et Q le plan orthogonal

de G dans F, de sorte que l'on a E P ± Q ± G. On considère v e le

nul sur G et qui échange les plans Pet Q; dans une base de P _L Q convenable,

on a

^(O) I A A A 1 '

On a alors cpxO) 0 pour tout x e F Q ± G, car v(x) appartient

à P F1, donc cet endomorphisme u permet de construire un
réseau (o-extrême) dont l'ensemble des vecteurs minimaux est

S n Ker uCSnGCSnK=0, ce qui est absurde.

Supposons désormais o2 Id, o ^ ± Id, notons E+ et E~ les sous-

espaces propres de o pour les valeurs propres +1 et — 1, et soit L un
réseau o-extrême dont l'ensemble S des vecteurs minimaux est inclus dans un

hyperplan H de E Il existe un hyperplan o-stable F de H dont le plan orthogonal

P F1 contient un vecteur propre e de o pour la valeur + 1 et un
vecteur propre e' pour la valeur - 1 {e et e' sont supposés unitaires). Si H
n'est pas stable par o, il suffit de prendre comme dans le cas symplectique
F H n o(N). En effet, si le plan F1 était contenu dans E+ par exemple,

il en serait a fortiori de même pour la droite HL C F1, de sorte que H
serait o-stable. Ainsi la restriction de o au plan stable F1 est =£ ± Id. Si

l'hyperplan H est stable, par exemple si H± est inclus dans E + on considère

un plan P engendré par la droite et un vecteur non nul de E~ (par
hypothèse il en existe). Le sous-espace o-stable F P± répond à la question.
L'endomorphisme u qui est nul sur F et qui échange e et e' appartient à A et

l'on peut supposer (px(^) ^ 0 pour tout x e H (même démonstration que dans
le cas symplectique). Il permet donc de construire un réseau o-extrême L' dont
l'ensemble S' S n Ker u de vecteurs minimaux est contenu dans F.
Désormais, L désigne un réseau o-extrême dont l'ensemble S des vecteurs
minimaux est inclus dans un sous-espace o-stable G de F de dimension
minimale. Puisque G est stable par o, et non nul, il contient au moins un vecteur
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propre (unitaire) a pour g, par exemple a e E +. L'endomorphisme u qui
échange les vecteurs e' et a et qui est nul sur l'orthogonal du plan (a,er) appartient

à ^ (si a appartient à E~, on remplace e' par e). De plus, S C G

est inclus dans l'hyperplan Kqi u ± Rö sur lequel cpx(^) est nul ou de signe

constant (même démonstration que dans le cas symplectique). On peut
donc construire à partir de u ou de — v un nouveau réseau g-extrême dont
l'ensemble des vecteurs minimaux S n Ker v est contenu dans le sous-espace o-
stable G n Ker v strictement contenu dans G (puisque a n'appartient pas
à Ker y), ce qui est contraire au caractère minimal de G.

8. Classification des réseaux isoduaux de petite dimension

Dans ce paragraphe on considère un élément g e 0(E), généralement tel

que g2 ± Id (et g^A ± Id), et l'on recherche les réseaux o-isoduaux
strictement extrêmes pour g. D'après le corollaire 4.9, le nombre 5" de

couples ±x de vecteurs minimaux d'un tel réseau est ^ dim(^fc) + 1,

puisque le groupe de Lie % est contenu dans le noyau du déterminant. Dans

les cas orthogonal et symplectique, on déduit du th. 7.4 les minorations
suivantes :

8.1. Proposition. Soit L un réseau g -isodual a -extrême.

(1) Si L est ^-orthogonalon a s ^ pq +1, où p et q sont les

multiplicités des valeurs propres +1 et —1 de c (p + q n).

(2) Si L est g -symplectique, on a s ^ m2 + m + 1 (n 2m).

Le cas de la dimension 2 est facile : les réseaux de déterminant 1 sont tous
isoduaux pour une rotation d'ordre 4, et les réseaux extrêmes sont semblables

à A2. (Du reste, on a 5 ^ 3 par 8.1.) Ceux qui sont isoduaux pour une autre
transformation sont semblables à Z2 ou à A2.

Les réseaux isoduaux de dimension 3 ont été décrits par Conway et Sloane

dans [C-S3], qui trouvent deux familles. L'une d'elle, qui correspond à une
rotation d'ordre 4, est formée de réseaux réductibles, cf. la fin du §4. L'autre
correspond au cas où ± g est une rotation d'angle n. Pour cette famille, il y
a un unique réseau o-extrême, le réseau ccc de [C-S3].

On retrouve ce résultat en utilisant la classification (au sens de la déf. 5.1,

appliquée à l'exemple 2.3) qui est faite dans [Ber]. On montre en effet
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