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bornés: on a en effet N(e}) < 5% < wgg (voir [Ber], 2.7), et N(e ANE@)"!
< K,,zdet(L) par choix de la base «réduite» %, d’ou N(e/)N(e;) < K]’;C(lit)(f)
= T’i")—,, < K?. La démonstration s’achéve comme ci-dessus, en remarquant
que si les deux bases % et u(%#) de E fournissent la méme représentation
intégrale g— B, du groupe G, le changement de base u appartient au
commutant ¥ de G (comme on a g(u(e;)). (u(e))* = g(u(e))) . ‘u-"'(ef)
= (u-'gu)(e;).e’, la condition sur u s’écrit u-!'gu = g pour tout
geG). [

Les G-réseaux dont les vecteurs minimaux engendrent [’espace se répar-
tissent donc en un nombre fini de G-classes. C’est en particulier le cas des
réseaux G-parfaits ([B-M2], prop. 2.9). Comme de plus une G-classe contient
au plus un réseau G-parfait ([B-M2], prop. 2.9), on retrouve ainsi le résultat
de finitude de [Ja].

7. RESEAUX ISODUAUX ORTHOGONAUX ET SYMPLECTIQUES

On conserve les notations du § précédent. On note ¢ un élément de O(E).
On rappelle que b, désigne la forme bilinéaire entiere (x,y)— x.oy, et
qu’un réseau c-isodual est dit orthogonal (resp. symplectique) si b, est symé-
trique (resp. alternée). Il revient au méme de dire que o2 a pour carré + Id
(resp. — Id).

Le cas ou 6 = =+ Id est particulier: les réseaux c-isoduaux sont les réseaux
unimodulaires, et il est facile de vérifier que les composantes connexes de .7
sont les classes d’isométrie de réseaux unimodulaires (cf. ci-dessous). Tous sont
donc strictement c-extrémes. Sauf mention du contraire, nous supposons
c # * Id.

Nous allons tout d’abord examiner la structure de ’espace .#,. Pour ce
faire, nous rappelons deux résultats sur les formes bilinéaires entiéres de déter-
minant inversible. Le premier, dG a Milnor et Serre, est démontré dans [Se],
le second (beaucoup plus facile) dans [M-H].

Rappelons qu’un Z-module quadratique (sans torsion, de type fini) (M, b)
est dit pair si b(x, x) ne prend que des valeurs paires, et impair dans le cas
contraire. Etant donné un réseau M, on note M * (resp. M ~) le module qua-
dratique M muni de la forme bilinéaire (x, y) — x .y (resp. (x,y) = — x.y).
On note U le module quadratique (Z?, 2x,x,). Enfin, pour p, ¢ > 0 entiers,
pM + gN désigne la somme orthogonale de p copies de M et de g copies
de N.
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7.1. LEMME. Un Z-module quadratique indéfini impair (resp. pair) est
isométrigue a une somme pZ* + qZ~ (resp. pU + qE{ ou pU+ gEyg ).
Sa signature (r,s) est égale @ (p,q) (resp.a (p +8q,p) ou (p, p + 8q)).
Un tel module est caractérisé & isométrie prés par son type (pair ou
impair) et sa signature, et il existe si et seulement si, dans le cas pair, on
a s=r mod 8.

7.2. LEMME. Soit A un anneau principal, et soit M un A-module
de type fini, sans torsion, de rang n, muni d’une forme alternée de déter-
minant inversible dans A. Alors, n est pair, soit n=2m, et M est
isométrigue @ une somme orthogonale de m copies de A? muni de la
Jorme Xy, — X3)1.

Nous en venons maintenant aux réseaux o-isoduaux orthogonaux ou
symplectiques, en supposant ¢ # =+ Id, ce qui assure dans le premier cas que
la forme b, est indéfinie.

7.3. THEOREME. Soit o € O(E) de carré =+1d, o #+ =1d. Alors,
la famille %, est composée d’une unique orbite sous G, (représentée
par Z" muni d’un automorphisme convenable), sauf dans le cas des
réseaux orthogonaux de dimension paire, ou il existe une seconde orbite
représentée par des réseaux 21" ou D (selon la signature de b,).

Démonstration. Comme G, est le groupe orthogonal de b,, deux
réseaux appartiennent a la méme orbite sous G, si et seulement si les formes
b, qui leur sont associées sont isométriques. Les lemmes 7.1 et 7.2 montrent
qu’il y a selon les cas au plus une ou deux orbites, et les exemples de Z" et

de D,, (cf. ex. 6.4, (3)) montrent que ces orbites existent effective-
ment. [

La proposition ci-dessous décrit les espaces # dans les cas orthogonaux
et symplectiques. Sa démonstration découle tout de suite de la définition
de 7 (prop. 6.1, (4)).

7.4. PROPOSITION.

(1) Dans le cas orthogonal, soit E =E* 1L E- la décomposition
de E en sous-espaces propres pour o. On a alors

7 ={veEnd*E)|0(E*) CE~ e v(E")CE*},

et donc dim 7 = dimE* .dim E .
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(2) Dans le cas symplectique, soit % une base orthonormée de E dans
laquelle la matrice de G, est formée de blocs diagonaux de la

forme ( 0

) . Alors, les éléments de 77 sont ceux qui ont pour
matrices les matrices symétriques formées de blocs de la forme

a b . . (i L4
(b ); la dimension de 7 est donc m?+ m (on a posé
—a

n=2m).

[Dans le cas symplectique, la dimension du commutant de ¢ dans
Ends(E) est m? ([B-M2], prop. 3.3), et ’on a bien ’—“L;ﬂ —m?=m?*+ m.]

7.5. REMARQUE. Lorsque ¢ = =+ 1Id, la dimension de %, donc aussi
celle de la sous-variété des automorphismes symétriques de G, est nulle. Il
en resulte que les composantes connexes de .7, sont les classes d’isométrie de
réseaux unimodulaires. La classification a été faite jusqu’a la dimension 25,
cf. [C-S], ch. 16-18 et les références qui s’y trouvent. Le groupe G, est dans
ce cas le groupe orthogonal O(F), qui a deux composantes connexes. Le
nombre d’orbites de .7, sous G, tend vers I’infini avec la dimension de E, ce
qui montre que I’hypotheése «c # =+ Id» ne peut pas étre supprimée de 1’énoncé
du th. 7.3.

7.6. THEOREME. Dans le cas orthogonal (avec ¢ + =+ 1d) ou symplec-
tique, les réseaux c-extrémes sont strictement extrémes, et leurs vecteurs
minimaux engendrent [’espace E.

Démonstration. Compte tenu du th. 4.5,(i), il suffit de prouver que,
si L € .7, est un réseau c-extréme, ’ensemble S de ses vecteurs minimaux
engendre E. La démonstration se fera par ’absurde en utilisant le fait que,
siv e 7 est tel que 9, (v) = 0 pour tout x € S, il existe un réseau extréme (de
la forme (exp(zv/2)) (L) pour ¢ > 0 assez petit) dont I’ensemble des vecteurs
minimaux est S N Ker v (cf. 4.6-4.8). Dans tous les cas, on se ramene au cas
ou les vecteurs minimaux sont contenus dans un sous-espace c-stable de E
de codimension > 2.

Commencons par le cas symplectique. Si S est contenu dans un hyperplan
H de E, soit F = H n o(H) le sous-espace o-stable maximal de H. Dans une
base # convenable de P = F*, la matrice de la restriction de ¢ a P est

0 1 ,
( 1 O)' On considére ’endomorphisme v € Z nul sur F et dont la

0 ,
restriction a P a pour matrice (1 O) dans Z. Alors x— ¢, (v) est nul ou
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de signe constant sur ’hyperplan H, a fortiori sur S. En effet, soit
x=Ae+y,LeR, yeF, lécriture de x e H selon la décomposition
H=RelF. On a 0,()=0v(x).x=2Av(e).(he+y)=r*v(e).e (car
v(e).y = e.v(y) = 0); ainsi, quitte a remplacer v par — v, on peut SUpposer
®.(v) > 0 pour tout x € H. Il existe donc un réseau c-extréme dont 1’en-
semble des vecteurs minimaux est Ker v n S contenu dans F. On peut donc
supposer désormais S contenu dans F. Soit alors K un hyperplan de F disjoint
de S, G = K n o(K) le sous-espace stable correspondant, et Q le plan ortho-
gonal de G dans F, de sorte que Plona E = P L Q L G. On considere v € 7
nul sur G et qui échange les plans P et Q; dans une base de P L Q convenable,
on a

0 1 0 0 0 0 1 0
10 0 0 o 0o 0o -1

A= 0o 0 o 1) “W=L1 0 o0 o
0 0 -1 0 0 -1 0 0

On a alors ¢,(v) =0 pour tout xe F=Q L G, car v(x) appar-
tient a P = F!, donc cet endomorphisme v permet de construire un
réseau  (c-extréme) dont [I’ensemble des vecteurs minimaux est
SNnKero CSNnGCSnK=0, ce qui est absurde.

Supposons désormais o2 = Id, ¢ # +1Id, notons E* et E~- les sous-
espaces propres de o pour les valeurs propres + 1 et — 1, et soit L un
réseau o-extréme dont ’ensemble S des vecteurs minimaux est inclus dans un
hyperplan H de E . 1l existe un hyperplan c-stable 7 de H dont le plan ortho-
gonal P = F! contient un vecteur propre e de ¢ pour la valeur + 1 et un
vecteur propre e’ pour la valeur — 1 (e et e’ sont supposés unitaires). Si H
n’est pas stable par o, il suffit de prendre comme dans le cas symplectique
F = H n o(H). En effet, si le plan F+ était contenu dans £+ par exemple,
il en serait a fortiori de méme pour la droite H+ C F*, de sorte que H
serait o-stable. Ainsi la restriction de ¢ au plan stable F+ est # + Id. Si
I’hyperplan H est stable, par exemple si H+ est inclus dans £+, on considére
un plan P engendré par la droite H+ et un vecteur non nul de £~ (par
hypothese il en existe). Le sous-espace o-stable F = P+ répond a la question.
L’endomorphisme v qui est nul sur F et qui échange e et ¢’ appartient a & et
I’on peut supposer ¢, (v) = 0 pour tout x € H (méme démonstration que dans
le cas symplectique). Il permet donc de construire un réseau c-extréme L’ dont
I’ensemble S’ =S N Kerv de vecteurs minimaux est contenu dans F.
Désormais, L désigne un réseau o-extréme dont ’ensemble S des vecteurs
minimaux est inclus dans un sous-espace o-stable G de F de dimension
minimale. Puisque G est stable par ¢, et non nul, il contient au moins un vecteur
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propre (unitaire) ¢ pour o, par exemple ¢ € E*. I’endomorphisme v qui
échange les vecteurs e’ et ¢ et qui est nul sur orthogonal du plan {a, e’) appar-
tient a Z (si @ appartient a £~, on remplace e’ par e). De plus, SC G
est inclus dans I’hyperplan Kerv L Ra sur lequel ¢, (v) est nul ou de signe
constant (m€me démonstration que dans le cas symplectique). On peut
donc construire a partir de » ou de — v un nouveau réseau G-extréme dont
I’ensemble des vecteurs minimaux S N Ker v est contenu dans le sous-espace G-
stable G n Kerv strictement contenu dans G (puisque & n’appartient pas
a Kerv), ce qui est contraire au caractére minimal de G. [

8. CLASSIFICATION DES RESEAUX ISODUAUX DE PETITE DIMENSION

Dans ce paragraphe on considére un élément ¢ € O(E), généralement tel
que c2= +1Id (et o # +1d), et Ion recherche les réseaux oG-isoduaux
strictement extrémes pour o. D’aprés le corollaire 4.9, le nombre s de
couples =+ x de vecteurs minimaux d’un tel réseau est > dim(%;) + 1,
puisque le groupe de Lie %, est contenu dans le noyau du déterminant. Dans
les cas orthogonal et symplectique, on déduit du th. 7.4 les minorations
suivantes:

8.1. PROPOSITION. Soit L un réseau c-isodual c-extréme.

(1) Si L est c-orthogonal, ona s>=pqg+ 1, ou p et q sontles
multiplicités des valeurs propres +1 et —1 de o (p+ qg=n).

(2) Si L est c-symplectique, ona s=2m?*>+ m+ 1 (n=2m).

Le cas de la dimension 2 est facile: les réseaux de déterminant 1 sont tous
isoduaux pour une rotation d’ordre 4, et les réseaux extrémes sont semblables
a A,. (Du reste, on as > 3 par 8.1.) Ceux qui sont isoduaux pour une autre
transformation sont semblables a Z2 ou a A4,.

Les réseaux isoduaux de dimension 3 ont été décrits par Conway et Sloane
dans [C-S3], qui trouvent deux familles. L’une d’elle, qui correspond a une
rotation d’ordre 4, est formée de réseaux réductibles, cf. la fin du §4. L’autre
correspond au cas ou + ¢ est une rotation d’angle . Pour cette famille, il y
a un unique réseau c-extréme, le réseau ccc de [C-S3].

On retrouve ce résultat en utilisant la classification (au sens de la déf. 5.1,
appliquée a I’exemple 2.3) qui est faite dans [Ber]. On montre en effet
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