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Posons, pour tout x e S,

VxO) (pA-(expO) - Id) - (px0)

D'après le lemme 4.2, (ii), on a l'inégalité \f/A-(^) ^ 0, avec égalité si et

seulement si v(x) 0. Par 5.3, on a

(5.4) 7V(Z/) - N(L) <px(u) + \|Jx(u) pour tout x e S

Puisque S est S^-eutactique, il existe des coefficients px > 0 tels que

Exms Px<Px(v) Tr(v) 0, d'où l'on tire, par combinaison linéaire des

relations 5.4:

(5.5) f S pà (N(L') -N(L)) 0 + F
\x e S J x e S

et donc N(L') - N(L) ^ 0, d'où y(L') ^ y (L), ce qui prouve (1).

Pour prouver (2), on suppose de plus que L' est ^F-eutactique et dans la

classe cd (i.e., on a S(Lf) u(S)). En échangeant les rôles de L' et de L,
on voit que l'on a N(L') - N(L) 0 (i.e., y (Z/) y (L)), et donc (par 5.5)

\jjx(u) 0 c'est-à-dire u(x) 0 pour tout x e S. Donc, S est inclus dans

Ker v. Cela entraîne que v est nul: c'est clair si S engendre E, et, si L' est

^ -parfait, cela résulte des égalités cp^ (l>) 0 pour tout x e S. On en déduit

que l'on a {uu Id, donc que u est une isométrie.

5.6. Corollaire. Un réseau strictement W-extrême est isolé (modulo
similitude) dans sa classe vf; en particulier, lorsqu'il s'agit d'un maximum
absolu (strict), ce réseau est unique modulo similitude dans la réunion
W des classes qui contiennent CS.

En effet, il réalise à la fois par définition même un maximum relatif
(ou absolu) de y dans donc aussi dans et d'après 5.2 un minimum
absolu de y dans cd.

[Une traduction du corollaire ci-dessus est qu'un tel réseau perd des

vecteurs minimaux par toute déformation suffisamment petite.]

6. IsoduALITÉ

Soit L un réseau de E, et soit L*sondual. Si o e 0(E) est une isométrie
du réseau Lsur son dual L*(ondit alors que est a-isodual), l'égalité
'o g"1 montre que a applique L* sur L,desorte que o2 est un automor-
phisme du réseau L. On peut préciser ce résultat en introduisant le groupe
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Aut*{L) des transformations orthogonales appliquant L sur L ou L*; ce

groupe contient le groupe Aut(L) Aut(X*)) avec l'indice 1 ou 2, l'indice
étant égal à 2 lorsque le réseau est isodual sans être unimodulaire. Dans ce cas,
les isométries de L sur son dual sont de la forme t a o u, c désignant
l'une d'entre elles, et u parcourant le groupe d'automorphismes de L.

Un réseau o-isodual est également o'-isodual pour o' ± o, o' ± o-1
et o' ± cm pour tout entier m impair. Il en résulte que, si l'isométrie g est

d'ordre 2km, avec m impair, om est encore une isométrie de L sur L*, dont
l'ordre est cette fois une puissance de 2; les isométries d'ordre une puissance
de 2 présentent de ce fait un intérêt particulier.

Soit g e E) et soit Je, la famille des réseaux o-isoduaux.

6.1. Proposition. Soit Gg le sous-groupe de Gl(is) défini par

G0 {u e Gl (is) I 1ugu g}

(1) La composante connexe d'un réseau L e ß~Q est contenue dans

l'orbite de L sous l'action de G0.

(2) Le groupe Gc est stable par transposition.

(3) Gg est le groupe orthogonal de la forme bilinéaire

b0:(x,y)^x. ay

(4) L'espace ^ associé à -9~0 est

&' {u e End5(is) | au - ua} C KerTr

Démonstration. (1) Soient L e et u e Gl^). On a les équivalences
suivantes :

u{L) e ßf & (u(L))* g(u(L)) & {u-l(L*) a(u(L))
& tU'1(c(L)) G(U(L)) & G~UUGU E G1(L)

d'où l'on déduit, lorsque u est suffisamment proche de l'identité,
g ~1 *ugu Id.

(2) La transformation g étant orthogonale, on a les équivalences

u e Gö & lu~l e Gg o lu e Gg.

(3) Cela résulte de l'équivalence, pour u e Gl {E), x e E, y e E,

u(x). Gu(y) x. g (y) & x. (uGu(y) x Gy

(4) On utilise la proposition de Bourbaki citée au début du § 2, avec pour
involution l'application u u1 g1ug~1. On a en effet (w1)1 o2wo-2,
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et u commute à o2 (les réseaux o-isoduaux sont des G-réseaux au sens

de l'exemple 2.2 pour le groupe G engendré par o2).

Etant donnés un sous-groupe fini G# de O (E) et un sous-groupe G

d'indice 2 de G#, on pourrait plus généralement énoncer la proposition 6.1

pour des réseaux (G#, G)-isoduaux, c'est-à-dire stables par G et échangés

avec leur dual par G#\G. L'espace W est alors défini de façon analogue,

par la formule ou (p (o) va, où cp : G* -> { ± 1} est le caractère de noyau G.

La projection sur W est donnée par la formule (cf. [B-M2], p. 45 dans le

cas des G-réseaux):

1 „projgr(tf) —— L (Pis) sus-1
I G# | s e G#

6.2. Proposition. S'il existe un réseau o-isodual, la forme bilinéaire
bG est de déterminant ± 1, égal au déterminant de o.

Démonstration. D'une façon générale, soient o e Gl(ii), bQ la forme
bilinéaire associée comme ci-dessus à o, et J? (e\ %

• • - en) une base de E
et sa base duale. On a

det^ùG det^*o(<^) det^ o(ß) det^* g/i det(o)det(Gram(^))

Soit alors L un réseau o-isodual et SS une base L. On a alors det(Gram(^))
det(L) 1, donc det(Z?a) det(o).

Il est immédiat que la forme ba est symétrique (resp. alternée) si et

seulement si l'on a g2 + Id (resp. o2 - Id), et que, dans le premier cas,
si + 1 (resp. - 1) est valeur propre d'ordre p (resp. q) de o, ba est alors
de signature (p, q).

6.3. Définition. Nous dirons que L est orthogonal (resp. symplec-
tiquë) s'il possède une isométrie o sur son dual pour laquelle ba est

symétrique (resp. alternée).

[Cette notion de réseau symplectique coïncide avec celle de [B-S] et de son
appendice.]

Dans la suite, nous considérons essentiellement des réseaux isoduaux
orthogonaux ou symplectiques. Notons que tout réseau unimodulaire est
trivialement orthogonal pour les automorphismes ± Id.

Revenant au cas général, on remarque que, sur un réseau o-isodual L,
la forme ba ne prend que des valeurs entières. Précisons ses valeurs sur
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l'ensemble S(L) des vecteurs minimaux de L : soient a et y e S(L) des vecteurs
minimaux de L ; on a | x. o (y) | ^ N{x) N(L) ^ yn, et donc pour n ^ 7

ou n 8 et L =£ E%, ba(x,y) est égal à 0 ou ±1.
Il en résulte qu'un tel réseau, si ses vecteurs minimaux engendrent E et

s'il possède un vecteur minimal x appartenant également à son dual, est

isométrique à Zn. En effet, soit L' un sous-réseau de L ayant une base

(ely e2, en) formée de n vecteurs minimaux de L. On a N(x) 1, donc

N(L') N(L) 1, ce qui entraîne les inégalités

1 det(L) ^ det{L') ^ N(el)N{e1)... N(en) N(L)n 1

La dernière inégalité est l'inégalité de Hadamard, qui est en fait une
égalité, ce qui entraîne que les vecteurs e\,e2t en sont deux à deux

orthogonaux.

6.4. Exemples

(1) Tout réseau plan convenablement normalisé est appliqué sur son dual

par les rotations ± o d'ordre 4, donc est symplectique, cf. [C-S2, appendice
de B-S].

(2) On trouve dans [B-Ml], §5 la description d'une famille de réseaux Lt
de dimension 4 ayant 9 vecteurs minimaux (la classe a9) dépendant d'un
paramètre modulo similitude, que l'on peut représenter dans une base

(^i > e2> ^3 > £4) convenable par les matrices de Gram

- 1 - 1 t \

2 1 - t - 11

1 -1 2 - 1

- 1 - 1 2 /

pour \ ^ t < L Ce sont, comme le réseau hexagonal A2, des réseaux

sur l'anneau des entiers d'Eisenstein Z[co], co2 + co + 1 0 et qui deviennent

isoduaux par renormalisation, comme on le voit en vérifiant que l'application
o : (pi e2, e3, e4) (- ef, ef, ef, - ef) est une similitude de Lt sur Lf.
Le groupe Aut#(L/) est d'ordre 144 sur l'intervalle ]|, 1 [, et d'ordre 288

(resp. 2304) pour t \ (resp. t 1), correspondant à un réseau semblable
à L\ — A4)0 (resp. à D4). Ces réseaux sont symplectiques et non orthogonaux
sauf L\ et D4 pour lesquels le groupe Aut#(L,) contient des isodualités

d'ordre 2 de signatures arbitraires.

Pour t croissant de \ à 1, l'invariant d'Hermite du réseau Lt, égal à

2[(^ + 1) (2 - t)] ~1/2, croît strictement de | à y4 ]/2.

2

t
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(3) Dans R", n > 8 pair, muni de sa base canonique (si, £2, •••> on

pose c - \ (81 + 82 + • • • + £n) et s' \ (-£1 + £2 + ' ' * + £/»)» et Von

considère les réseaux Dn, définis dans Z" par la congruence Ü ,-*/ 0 mod 2,

et Dn u (s + Dn). Le groupe d'automorphismes Aut(DJ de Dn

s'identifie au produit semi-direct (± l)n xi celui de D* au groupe de

Weyl du précédent (les automorphismes (8/) h» (± s/) de déterminant impair

échangent 8 et s' modulo Dn). Pour n 2 mod 4 (resp. n 0 mod 4), on

a D + * =DnKj(z' + Dn) (resp. Dj* Dj), et Aut#{D + s'identifie à

Aut(LL) pour n 2 mod 4 et est égal à Aut(D^) sinon. Les isométries

de D„+ sur son dual sont les automorphismes de Dn composés d'une

permutation et d'un nombre impair (resp. pair) de changements de signes

des 8/. Les réseaux D* sont symplectiques, et également orthogonaux avec

pour systèmes de valeurs propres possibles les combinaisons à k f mod 2

valeurs propres - 1.

(4) Soit p 3 mod 4 premier. Les réseaux A^p_\l)/^ de Craig ([C-S],
ch. 8, §6) sont de norme isoduaux de type symplectique après renormalisation,

eutactiques et conjecturalement parfaits, cf. [B-B], §3.

(5) Watson ([Wa]) a déterminé les valeurs maximales de l'invariant s pour
les réseaux de dimension ^ 7 dépourvus de sections minimales de type A2.
Ce maximum est en particulier atteint sur un réseau unique (à isométrie près)
entier pour le minimum 3, que nous notons Wan. Ces réseaux s'obtiennent

comme sections de ]/2E*. Le réseau Wa6, défini par la matrice de Gram A
ci-dessous, est proportionnel à un réseau o-isodual pour une transformation

o de type symplectique. Cela se vérifie matriciellement par la formule
A *Si (4A -1) S1, où Si représente une isométrie o 1 dans le couple de bases

(^, ./y*) pour lequel on a Gram(3^) A:
3 -1 -1 -1 -1 1 \
- 1 3 -1 1 1 -1
- 1 - 1 3 -1 1 -1
- 1 1 - 1 3 1 1

- 1 1 1 1 3 -1
\ 1 - 1 - 1 1 - 1 3

1° 0 0 0 0 - IV
0 0 0 1 0 1

0 1 -1 0 0 0
1 -1 0 0 0 1

0 0 -1 1 0 1

\l -1 0 -1 -1 0
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Le fait que Wa6 soit symplectique se voit en contrôlant que S (ASj-1)3
est telle que S2 - 64 Id.

[Les principaux invariants de Wa6 sont s(Wa6) 16, det(JPtf6) 64,
| Aut(Wa6) | 29. 32. 5. Signalons les similitudes Wa6~D£,Wa5~A 25

~ (P2S)* et Wa4 ~,43*.]

Dans l'étude des relations entre un réseau et son dual, il y a deux
normalisations naturelles: celle qui donne aux deux réseaux le même déterminant

(alors égal à 1, vu la formule det(L*) det(L) l) et celle qui leur donne la

même norme.

6.5. Définition. Nous dirons qu'un réseau L est normal si ces deux

normalisations coïncident. (Il revient au même de dire que les deux réseaux

ont même invariant d'Hermite.)
Il est clair que tout réseau isodual est normal.
Soit L un réseau normal, de déterminant d et de norme m, et soient d*

et m* les invariants analogues de L*. (On a dd* 1.) Lorsque l'on effectue

sur L une homothétie de rapport ]/X, L* subit une homothétie de

rapport inverse. On transforme alors d en D Xnd, m en M Xm, d*
en D* X~n d* et m* en M* X~lm*. L'égalité M* M équivaut à

6.6. Proposition. Pour qu'un réseau soit normal, il faut et il suffit
que ses invariants d, m, m* vérifient l'égalité

L'étude de la liste des réseaux parfaits jusqu'à la dimension 7 donnée dans

[C-Sl] montre que les seuls réseaux parfaits de dimension < 7 qui sont
normaux sont (à similitude près) P J - Z, Pl2 - A2, P\ - DA et P\ - A \ ~ P6.
Il s'agit dans tous les cas de réseaux isoduaux. On vérifie de même que, parmi
les réseaux de racines irréductibles, seuls Z, A2, D4 et Es sont normaux.

La proposition suivante, dont nous ne donnerons pas la démonstration,
précise la proposition 4.4 dans le cas du groupe Ga:

m*
X2 —, d'où

m

6.7. Proposition. Les éléments u de G0 sont de la forme

u fv



DENSITÉ DANS UNE FAMILLE DE RÉSEAUX 355

où f est une isométrie qui commute avec g, et v un automorphisme

symétrique positif dont les valeurs propres =£ 1 sont deux à deux inverses,

et dont les sous-espaces propres Ex vérifient o(Ex) Ex-\.

Nous en venons aux résultats de finitude annoncés dans l'introduction :

on se borne aux réseaux isoduaux de densité minorée. Rappelons que si

l'ensemble S des vecteurs minimaux d'un réseau L engendre E, l'invariant
d'Hermite de L est ^ 1 (reprenant dans un contexte plus général les remarques

qui suivent la définition 6.3, on voit en effet que l'inégalité de Hadamard

appliquée à un sous-réseau L' convenable de L donne det(L) ^ det(Z/)

^N(e[)N(e2)...N(e'n) N(L)\ soit y (L) ^ 1).

6.8. Théorème. Les réseaux de dont les vecteurs minimaux

engendrent E se répartissent en un nombre fini de classes au sens de la

définition 5.1.

En utilisant le théorème 5.2, on en déduit (comparer avec [B-M3]):

6.9. Corollaire. A similitude près, il n'y a qu'un nombre fini de

réseaux L^-eutactiques dont les vecteurs minimaux engendrent E.

Démonstration de 6.8. On sait depuis Hermite qu'il existe une constante

Kn telle que tout réseau L de dimension n admet une base dS avec

N(ex)... N(en) ^ Kn det(L), ce qui entraîne que les composantes des

vecteurs minimaux dans cette base sont bornées (par ]/K~n, cf. [Ber],
lemme 2.7) et donc en nombre fini. On a ici det(L) 1 et N(L) ^ 1, donc

N(ei) ^ Kn pour tout /. La matrice Ba de la forme ba dans la base M est

donc bornée (on a | b0(ef9t ej) | | o(c;) e}[ ^ \/W(ef)N(ef) ^ Kn). Ces

matrices Ba sont donc elles aussi en nombre fini. Soient alors Lx et L2 deux
réseaux de qui ont dans des bases convenables et S2 même matrice
B0 et mêmes composantes de vecteurs minimaux. Soit u e Gl(2i) tel que
S% e= u(.y/f). La deuxième condition signifie que S(L2) est égal à u(S(Lx)).
Quant à la première, elle équivaut à u e O(ba) Gö (prop. 6.1,(3)). Ainsi,
Lx et L2 sont dans la même g-classe.

Remarque. La démonstration peut être adaptée à la situation de

l'exemple 2.2, c'est-à-dire celle des réseaux stables par un sous-groupe fini G
donné de 0(E), et dont les vecteurs minimaux engendrent l'espace.

Il suffit pour cela de remplacer la matrice B0 (o(£,•).£,•) par les

matrices Bg (g(ej). ef) g e G des automorphismes g e G dans la base d/i.

Puisque G opère sur le réseau de base d/f ces matrices ont des coefficients

entiers; ils sont de plus bornés, car les produits N(ef)N(ej) sont
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bornés: on a en effet N(ef) ^ ^ ^ (voir [Ber], 2.7), et N(ej)N(L)n~l
^ Kn àQt{L) par choix de la base «réduite» d'où N(e*)N(ej) ^

^ K2n. La démonstration s'achève comme ci-dessus, en remarquant
que si les deux bases & et u(ß) de E fournissent la même représentation
intégrale g i-> Bg du groupe G, le changement de base u appartient au
commutant ^ de G (comme on a g(u(ej)) (w(£/))* g(u(ej)) iu~l(ef)

(u~lgu)(ej). e*, la condition sur w s'écrit u~lgu g pour tout
g e G).

Les G-réseaux dont les vecteurs minimaux engendrent l'espace se
répartissent donc en un nombre fini de G-classes. C'est en particulier le cas des

réseaux G-parfaits ([B-M2], prop. 2.9). Comme de plus une G-classe contient

au plus un réseau G-parfait ([B-M2], prop. 2.9), on retrouve ainsi le résultat
de finitude de [Ja].

7. Réseaux isoduaux orthogonaux et symplectiques

On conserve les notations du § précédent. On note g un élément de O(E).
On rappelle que bQ désigne la forme bilinéaire entière (x, y) x oy, et

qu'un réseau g-isodual est dit orthogonal (resp. symplectique) si ba est

symétrique (resp. alternée). Il revient au même de dire que g2 a pour carré + Id
(resp. - Id).

Le cas où g ± Id est particulier: les réseaux g-isoduaux sont les réseaux

unimodulaires, et il est facile de vérifier que les composantes connexes de

sont les classes d'isométrie de réseaux unimodulaires (cf. ci-dessous). Tous sont
donc strictement o-extrêmes. Sauf mention du contraire, nous supposons
g gfc ± Id.

Nous allons tout d'abord examiner la structure de l'espace .fG. Pour ce

faire, nous rappelons deux résultats sur les formes bilinéaires entières de

déterminant inversible. Le premier, dû à Milnor et Serre, est démontré dans [Se],
le second (beaucoup plus facile) dans [M-H].

Rappelons qu'un Z-module quadratique (sans torsion, de type fini) (M, b)
est dit pair si b(x,x) ne prend que des valeurs paires, et impair dans le cas

contraire. Etant donné un réseau M, on note M+ (resp. M-) le module
quadratique M muni de la forme bilinéaire (x, y) u» x y (resp. (x, y) - x y).
On note U le module quadratique (Z2, 2xj x2). Enfin, pour p,q ^ 0 entiers,

pM + qN désigne la somme orthogonale de p copies de M et de q copies
de N.
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