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Posons, pour tout x € S,
WX(U) = (px(GXp(U) - Id) - (px(U) .

D’aprés le lemme 4.2,(ii), on a Iinégalité y,(v) > 0, avec égalit€ si et
seulement si v(x) = 0. Par 5.3, on a

(5.4) N(L") — NWL) = ¢,(v) + y,(v) pour tout xeS.

Puisque S est & -eutactique, il existe des coefficients p, > 0 tels que
Y csPx®x(v) = Tr(v) =0, d’ou l’on tire, par combinaison lin¢aire des
relations 5.4:

(5.5 ( L px) (NIL)=N@) =0+ T prya(®) 20,
et donc N(L') — N(L) >0, d’ou y(L') = vy(L), ce qui prouve (1).

Pour prouver (2), on suppose de plus que L’ est & -eutactique et dans la
classe ¢ (i.e., on a S(L") = u(S)). En échangeant les roles de L’ et de L,
on voit que 'on a N(L') — N(L) =0 (i.e., y(L") = y(L)), et donc (par 5.5)
v, (v) = 0 c’est-a-dire v(x) = 0 pour tout x € S. Donc, S est inclus dans
Ker v. Cela entraine que v est nul: c’est clair si S engendre E, et, si L’ est
7 -parfait, cela résulte des égalités ¢, (v) = 0 pour tout x € S. On en déduit
que ’on a ‘uu = Id, donc que u est une isométrie. [

5.6. COROLLAIRE. Un réseau strictement ©-extréme est isolé (modulo
similitude) dans sa classe €, en particulier, lorsqu’il s’agit d’un maximum
absolu (strict), ce réseau est unique modulo similitude dans la réunion
7 des classes qui contiennent <.

En effet, il réalise a la fois par définition méme un maximum relatif
(ou absolu) de y dans .#, donc aussi dans ¥, et d’aprés 5.2 un minimum
absolu de y dans ¥.

[Une traduction du corollaire ci-dessus est qu’un tel réseau perd des
vecteurs minimaux par toute déformation suffisamment petite.]

6. ISODUALITE

Soit L un réseau de E, et soit L* son dual. Si 6 € O(E) est une isométrie
du réseau L sur son dual L* (on dit alors que L est c-isodual), 1’égalité
‘c = o~ ! montre que ¢ applique L* sur L, de sorte que 6?2 est un automor-
phisme du réseau L. On peut préciser ce résultat en introduisant le groupe
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Aut# (L) des transformations orthogonales appliquant L sur L ou L*; ce
groupe contient le groupe Aut(L) (= Aut(L*)) avec I’indice 1 ou 2, l’indice
étant égal a 2 lorsque le réseau est isodual sans étre unimodulaire. Dans ce cas,
les 1sométries de L sur son dual sont de la forme © = ¢ © u, ¢ désignant
I’une d’entre elles, et u parcourant le groupe d’automorphismes de L.

Un réseau c-isodual est également ¢’-isodual pour 6’ = + 6,6’ = 67!
et 6’ = + o pour tout entier m impair. Il en résulte que, si I’isométrie ¢ est
d’ordre 2%m, avec m impair, ¢ est encore une isométrie de L sur L*, dont
P’ordre est cette fois une puissance de 2; les isométries d’ordre une puissance
de 2 présentent de ce fait un intérét particulier.

Soit ¢ € Z(E) et soit .7, la famille des réseaux c-isoduaux.

6.1. PROPOSITION. Soit G, le sous-groupe de GIl(E) défini par
Gy = {u € GI(E) | 'ucu = o} .

(1) La composante connexe d’un réseau L € .7, est contenue dans
[’orbite de L sous ’action de G,.

(2) Le groupe G, est stable par transposition.

(3) G, est le groupe orthogonal de la forme bilinéaire
bs:(x,y)>x.0y.
(4) L’espace 7~ associé a #, est
7 ={v e End*(E) | ov = —vc} C KerTr .

Démonstration. (1) Soient L € ¥, et u € GI(E). On a les équivalences
suivantes:

u(l)y e 75 & (u@)* = o(u)) & '‘u='(L* = c(ul))
s 'u-(c)=0c(u)) & c '"ucu € GI(L) ,

d’ou P’on déduit, lorsque wu est suffisamment proche de I’identité,
c Muocu = Id.

(2) La transformation ¢ <€tant orthogonale, on a les équivalences
ueGs, ¢ 'u'lteGs, ¢ 'ue Gs.

(3) Cela résulte de I’équivalence, pour u € GI(E), x € E, y € E,
u(x).cu(y)=x.0(y) @ x.'ucu(y) =x.0y.

(4) On utilise la proposition de Bourbaki citée au début du §2, avec pour
involution ’application ¥ = u' = c‘uc~!. On a en effet (#')' = c%uc -2,
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et u commute & o2 (les réseaux o-isoduaux sont des G-réseaux au sens
de ’exemple 2.2 pour le groupe G engendré par c2). L[]

Etant donnés un sous-groupe fini G#* de O(EF) et un sous-groupe G
d’indice 2 de G#, on pourrait plus généralement énoncer la proposition 6.1
pour des réseaux (G#, G)-isoduaux, c’est-a-dire stables par G et échangés
avec leur dual par G#\G. L’espace & est alors défini de facon analogue,
par la formule cv = @(c)vo, ou ¢: G* — { + 1} est le caractére de noyau G.
La projection sur @ est donnée par la formule (cf. [B-M2], p. 45 dans le
cas des G-réseaux):

projz(v) =

6.2. PROPOSITION. S’i/ existe un réseau c-isodual, la forme bilinéaire
b, est de déterminant =+ 1, égal au déterminant de o.

Démonstration. D’une facon générale, soient ¢ € GI(E), b, la forme
bilinéaire associée comme ci-dessus a o, et 4 = (e;, *--, e,) une base de E
et #* sa base duale. On a

det 4 b, = det 3* o (H) = det » 6(A) det y+ # = det(c)det(Gram (%)) .

Soit alors L un réseau c-isodual et % une base L. On a alors det (Gram (%))
= det(L) = 1, donc det(b,) = det(s). LI

Il est immédiat que la forme b, est symétrique (resp. alternée) si et
seulement si I’on a 62 = + Id (resp. 62 = — Id), et que, dans le premier cas,

si +1 (resp. — 1) est valeur propre d’ordre p (resp. g) de o, b, est alors
de signature (p, q).

6.3. DEFINITION. Nous dirons que L est orthogonal (resp. symplec-
tique) s’il possede une isométrie o sur son dual pour laquelle b, est
symétrique (resp. alternée).

[Cette notion de réseau symplectique coincide avec celle de [B-S] et de son
appendice.]

Dans la suite, nous considérons essentiellement des réseaux isoduaux
orthogonaux ou symplectiques. Notons que tout réseau unimodulaire est
trivialement orthogonal pour les automorphismes =+ Id.

Revenant au cas général, on remarque que, sur un réseau G-isodual L,
la forme b, ne prend que des valeurs entiéres. Précisons ses valeurs sur
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I’ensemble S (L) des vecteurs minimaux de L : soient x et y € S(L) des vecteurs
minimaux de L; on a|x.6(»)| < N(x) = N(L) < v,, et donc pour n < 7
oun=28etL #+FEs, bs(x,y) est égal a 0 ou =+ 1.

Il en résulte qu’un tel réseau, si ses vecteurs minimaux engendrent E et
s’il posséde un vecteur minimal x appartenant également a son dual, est
isométrique a Z1.". En effet, soit L’ un sous-réseau de L ayant une base
(ey, ey, ...,e,) formée de n vecteurs minimaux de L. On a N(x) = 1, donc
N(L") = N(L) = 1, ce qui entraine les inégalités

1 = det(L) < det(L’) < N(e,)N(ey) ... N(e,) = N(L)" = 1 .

La derni¢re inégalité est I’inégalité de Hadamard, qui est en fait une
¢galité, ce qui entraine que les vecteurs e;,e,, ..., e, sont deux a deux
orthogonaux.

6.4. EXEMPLES

(1) Tout réseau plan convenablement normalisé est appliqué sur son dual
par les rotations + ¢ d’ordre 4, donc est symplectique, cf. [C-S2, appendice
de B-S].

(2) On trouve dans [B-M1], §5 la description d’une famille de réseaux L,
de dimension 4 ayant 9 vecteurs minimaux (la classe ay) dépendant d’un
parametre modulo similitude, que 1’on peut représenter dans une base
(ei,e,,e;,es) convenable par les matrices de Gram

2 —1 — ] t
-1 2 1-¢ -1
-1 1-¢ 2 -1
t —1 -1 2

A[:

pour %<t< 1. Ce sont, comme le réseau hexagonal A,, des réseaux
sur ’anneau des entiers d’Eisenstein Z[w], ®? + o + 1 = 0 et qui deviennent
isoduaux par renormalisation, comme on le voit en vérifiant que I’application
c:(e,es,e3,e4) > (—ef,e¥,ef, —e¥) est une similitude de L, sur L¥.
Le groupe Aut#(L,) est d’ordre 144 sur l’intervalle ]é, 1 [ , et d’ordre 288
(resp. 2304) pour ¢ = % (resp. t = 1), correspondant a un réseau semblable
a Li = A, o (resp. a D,). Ces réseaux sont symplectiques et non orthogonaux
sauf Lﬁ et Dy pour lesquels le groupe Aut#(L,) contient des isodualités

d’ordre 2 de signatures arbitraires.

Pour ¢ croissant de % a 1, Pinvariant d’Hermite du réseau L,, égal a
2[(t+ 1) 2 — t)] /2, croit strictement de ;—1 avy,=12.
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(3) Dans R",n > 8 pair muni de sa base canonique (81,82, ...y €,), ON
pose 8—2(81+82+ c+€,) ets—— —g,+&,+ " +€,), e lon
considere les réseaux D, , définis dans Z” par la congruence ) X; = 0 mod 2,
et D' =D,u(e+D,). Le groupe d’automorphismes Aut(D,) de D,
s’identifie au produit semi-direct (£ 1)” X &,, celui de D' au groupe de
Weyl du précédent (les automorphismes (g;) = (£ ¢€;) de déterminant impair
échangent € et ¢ modulo D,). Pour n = 2 mod 4 (resp. n = 0 mod 4), on
a D'*=D,u (g +D,) (resp. D/* =D,), et Aut#*(D;) s’identifie a
Aut(D,) pour n =2 mod 4 et est égal a Aut(D,’) sinon. Les isométries
de D} sur son dual sont les automorphismes de D, composés d’une per-
mutation et d’un nombre impair (resp. pair) de changements de signes
des €;. Les réseaux D sont symplectiques, et également orthogonaux avec
pour systémes de valeurs propres possibles les combinaisons & k = 2 mod 2
valeurs propres — 1.

(4) Soit p = 3 mod 4 prem1er Les réseaux A((p +1/4) de Craig ([C-S],
ch. 8, §6) sont de norme “>—, isoduaux de type symplecthue apres renorma-
lisation, eutactiques et con]ecturalement parfaits, cf. [B-B], §3.

(5) Watson ([Wa]) a déterminé les valeurs maximales de I’invariant s pour
les réseaux de dimension < 7 dépourvus de sections minimales de type A,.
Ce maximum est en particulier atteint sur un réseau unique (a isométrie pres)
entier pour le minimum 3, que nous notons Wa,. Ces réseaux s’obtiennent
comme sections de ﬂE ;“ . Le réseau Wag, défini par la matrice de Gram A
ci-dessous, est proportionnel a un réseau o-isodual pour une transfor-
mation ¢ de type symplectique. Cela se vérifie matriciellement par la formule
A=1'5(44A-1) S, ou S| représente une isométrie 6, dans le couple de bases
(4, #*) pour lequel on a Gram(#) = A

(3 -1 -1 -1 -1 1\
-1 3 -1 1 1 — 1
-1 -1 3 —1 1 -1

A= -1 1 =1 3 1 1
\—1 1 1 1 —1)

1 -1 -1 1 -1 3

0 0 0 0 0 —1\

0 0 0 1 0 1

S, = 0 1 -~ 1 0 0 0

I -1 0 0 0 1

0 0 -1 1 0 1

1 -1 0 -1 -1 o)
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Le fait que Wag soit symplectique se voit en contrdlant que S = (A4S, 13
est telle que S? = — 641d.

[Les principaux invariants de Was sont s(Wag) = 16, det(Wa4) = 64,
| Aut(Wae) | = 29.32.5. Signalons les similitudes Wag ~ D/, Was ~ A?
~ (P)* et Wa, ~ A¥]

Dans I’¢tude des relations entre un réseau et son dual, il y a deux norma-
lisations naturelles: celle qui donne aux deux réseaux le méme déterminant
(alors égal a 1, vu la formule det(L*) = det(L) ~!) et celle qui leur donne la
méme norme.

6.5. DEFINITION. Nous dirons qu’un réseau L est normal si ces deux
normalisations coincident. (II revient au méme de dire que les deux réseaux
ont méme invariant d’Hermite.)

Il est clair que tout réseau isodual est normal.

Soit L un réseau normal, de déterminant d et de norme m, et soient d*
et m* les invariants analogues de L*. (On a dd* = 1.) Lorsque I’on effectue
sur L une homothétie de rapport [/A, L* subit une homothétie de rap-
port inverse. On transforme alors d en D = A"d, m en M = \Am, d¥
en D* = A-"d* et m* en M* = A~ 'm*. L’égalité M* = M équivaut a

m*

A2 =— dou:
m

6.6. PROPOSITION. Pour qu’un réseau soit normal, il faut et il suffit
que ses invariants d, m, m* vérifient [’égalité

d? = (ﬁ)
m*

L’étude de la liste des réseaux parfaits jusqu’a la dimension 7 donnée dans
[C-S1] montre que les seuls réseaux parfaits de dimension < 7 qui sont nor-
maux sont (a similitude pres) P} ~ 7, Pé ~ A,, Pi ~ Dy et P‘z ~ Aé ~ Pg.
Il s’agit dans tous les cas de réseaux isoduaux. On vérifie de méme que, parmi
les réseaux de racines irréductibles, seuls Z, A,, D, et Eg sont normaux.

La proposition suivante, dont nous ne donnerons pas la démonstration,
précise la proposition 4.4 dans le cas du groupe G,:

6.7. PROPOSITION. Les éléments u de G, sont de la forme

u=fu,
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o [f est une isométrie qui commute avec G, el U Un automorphisme
symétrique positif dont les valeurs propres # 1 sont deux a deux inverses,
et dont les sous-espaces propres E, vérifient o(E;) = Ej-1.

Nous en venons aux résultats de finitude annoncés dans l’introduction:
on se borne aux réseaux isoduaux de densité minorée. Rappelons que si
I’ensemble S des vecteurs minimaux d’un réseau L engendre E, I’invariant
d’Hermite de L est > 1 (reprenant dans un contexte plus général les remarques
qui suivent la définition 6.3, on voit en effet que I'inégalit¢ de Hadamard
appliquée a un sous-réseau L’ convenable de L donne det(L) < det(L")
< N(ej)N(e3)...N(e,) = N(L)", soit y(L) = 1).

6.8. THEOREME. Les réseaux de 7, dont les vecteurs minimaux
engendrent E se répartissent en un nombre fini de classes au sens de la
définition 5.1.

En utilisant le théoréme 5.2, on en déduit (comparer avec [B-M3]):

6.9. COROLLAIRE. A similitude pres, il n’y a qu’un nombre fini de
réseaux 7 -eutactiques dont les vecteurs minimaux engendrent E.

Démonstration de 6.8. On sait depuis Hermite qu’il existe une constante
K, telle que tout réseau L de dimension n admet une base 4 avec
N(e;)...N(e,) < K,det(L), ce qui entraine que les composantes des
vecteurs minimaux dans cette base sont bornées (par 1/]7” , cf. [Ber],
lemme 2.7) et donc en nombre fini. On a ici det(L) =1 et N(L) > 1, donc
N(e;) < K, pour tout i. La matrice B, de la forme b, dans la base % est
donc bornée (on a |b,(e;,e;)|=]c(e;).e;| <)/N(e,)N(e;) < K,). Ces
matrices B, sont donc elles aussi en nombre fini. Soient alors L, et L, deux
réseaux de ., qui ont dans des bases convenables %, et 4, méme matrice
B, et mémes composantes de vecteurs minimaux. Soit u € G1(E) tel que
A, = u(#,). La deuxiéme condition signifie que S(L,) est égal a u(S(L,)).
Quant a la premicre, elle équivaut a u € O(b,) = G, (prop. 6.1,(3)). Ainsi,
L, et L, sont dans la méme o-classe. [

REMARQUE. La démonstration peut étre adaptée a la situation de
exemple 2.2, c’est-a-dire celle des réseaux stables par un sous-groupe fini G
donné de O(E), et dont les vecteurs minimaux engendrent 1’espace.

Il suffit pour cela de remplacer la matrice B, = (c(e;).e;) par les
matrices B, = (g(e;).e) g € G des automorphismes g € G dans la base %.
Puisque G opere sur le réseau de base #, ces matrices ont des coeffi-
cients entiers; ils sont de plus bornés, car les produits N(e?‘)N(ej) sont
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bornés: on a en effet N(e}) < 5% < wgg (voir [Ber], 2.7), et N(e ANE@)"!
< K,,zdet(L) par choix de la base «réduite» %, d’ou N(e/)N(e;) < K]’;C(lit)(f)
= T’i")—,, < K?. La démonstration s’achéve comme ci-dessus, en remarquant
que si les deux bases % et u(%#) de E fournissent la méme représentation
intégrale g— B, du groupe G, le changement de base u appartient au
commutant ¥ de G (comme on a g(u(e;)). (u(e))* = g(u(e))) . ‘u-"'(ef)
= (u-'gu)(e;).e’, la condition sur u s’écrit u-!'gu = g pour tout
geG). [

Les G-réseaux dont les vecteurs minimaux engendrent [’espace se répar-
tissent donc en un nombre fini de G-classes. C’est en particulier le cas des
réseaux G-parfaits ([B-M2], prop. 2.9). Comme de plus une G-classe contient
au plus un réseau G-parfait ([B-M2], prop. 2.9), on retrouve ainsi le résultat
de finitude de [Ja].

7. RESEAUX ISODUAUX ORTHOGONAUX ET SYMPLECTIQUES

On conserve les notations du § précédent. On note ¢ un élément de O(E).
On rappelle que b, désigne la forme bilinéaire entiere (x,y)— x.oy, et
qu’un réseau c-isodual est dit orthogonal (resp. symplectique) si b, est symé-
trique (resp. alternée). Il revient au méme de dire que o2 a pour carré + Id
(resp. — Id).

Le cas ou 6 = =+ Id est particulier: les réseaux c-isoduaux sont les réseaux
unimodulaires, et il est facile de vérifier que les composantes connexes de .7
sont les classes d’isométrie de réseaux unimodulaires (cf. ci-dessous). Tous sont
donc strictement c-extrémes. Sauf mention du contraire, nous supposons
c # * Id.

Nous allons tout d’abord examiner la structure de ’espace .#,. Pour ce
faire, nous rappelons deux résultats sur les formes bilinéaires entiéres de déter-
minant inversible. Le premier, dG a Milnor et Serre, est démontré dans [Se],
le second (beaucoup plus facile) dans [M-H].

Rappelons qu’un Z-module quadratique (sans torsion, de type fini) (M, b)
est dit pair si b(x, x) ne prend que des valeurs paires, et impair dans le cas
contraire. Etant donné un réseau M, on note M * (resp. M ~) le module qua-
dratique M muni de la forme bilinéaire (x, y) — x .y (resp. (x,y) = — x.y).
On note U le module quadratique (Z?, 2x,x,). Enfin, pour p, ¢ > 0 entiers,
pM + gN désigne la somme orthogonale de p copies de M et de g copies
de N.
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