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348 A.-M. BERGE ET J. MARTINET

5. RESULTATS DE CLASSIFICATION

On conserve les notations et hypothéses des paragraphes précédents. On
suppose en outre que ¢ est connexe.

On classe ci-dessous les réseaux selon la configuration de leurs vecteurs
minimaux, généralisant des notions introduites dans [Ber] et [B-M3] (et
auparavant de facon informelle dans [B-M1], §5).

5.1. DEFINITION. Soient L et L’ deux réseaux appartenant a la famille
7, et Set S’ leurs ensembles de vecteurs minimaux. On définit les relations
suivantes:

L' =L sl existe u € & tel que L' = u(L) et S" = u(S),

L'<L il existe u € & tel que L" = u(L) et S" C u(S).

La relation = est une relation d’équivalence dans .7, et la relation <<
induit un ordre (encore noté <) sur ’ensemble des classes de = -équivalence.

Le théoréme suivant montre en particulier que les classes au sens de la
déf. 5.1 contiennent au plus un réseau strictement @ -extréme.

5.2. THEOREME. Soit % une classe et soit L € ¥ un réseau
o -eutactique.

(1) L’invariant d’Hermite atteint sur L son minimum dans la
réunion ¢ des classes < Z.

2) Si S(L) engendre E, ou si L est ©-parfait, alors les réseaux
eutactiques de <% sont tous semblables a L.

[Si le nombre de classes est fini (comme c’est le cas dans les exemples
du §2), on obtient la finitude des réseaux strictement extrémes pour le
groupe ¢, et méme des réseaux @ -eutactiques possédant zn vecteurs minimaux
indépendants.]

Démonstration . On se raméne tout de suite au cas ou ¢ est de déter-
minant 1. Soit L' = u(L) € ., u € <, un réseau tel que S’ D u(S). On a
donc N(u(x)) = N(L’) pour tout x € S, c’est-a-dire (lemme 4.2, (i))

Qx(‘fuu —Id) = N(L") — N(L) pour tout xeS.
De plus, comme ¢ est connexe, il existe v € & (de trace évidemment

nulle) tel que ‘uu = exp(v). On a donc

(5.3) o, (exp(v) —1d) = N(L') — N(L) pour tout xeS.
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Posons, pour tout x € S,
WX(U) = (px(GXp(U) - Id) - (px(U) .

D’aprés le lemme 4.2,(ii), on a Iinégalité y,(v) > 0, avec égalit€ si et
seulement si v(x) = 0. Par 5.3, on a

(5.4) N(L") — NWL) = ¢,(v) + y,(v) pour tout xeS.

Puisque S est & -eutactique, il existe des coefficients p, > 0 tels que
Y csPx®x(v) = Tr(v) =0, d’ou l’on tire, par combinaison lin¢aire des
relations 5.4:

(5.5 ( L px) (NIL)=N@) =0+ T prya(®) 20,
et donc N(L') — N(L) >0, d’ou y(L') = vy(L), ce qui prouve (1).

Pour prouver (2), on suppose de plus que L’ est & -eutactique et dans la
classe ¢ (i.e., on a S(L") = u(S)). En échangeant les roles de L’ et de L,
on voit que 'on a N(L') — N(L) =0 (i.e., y(L") = y(L)), et donc (par 5.5)
v, (v) = 0 c’est-a-dire v(x) = 0 pour tout x € S. Donc, S est inclus dans
Ker v. Cela entraine que v est nul: c’est clair si S engendre E, et, si L’ est
7 -parfait, cela résulte des égalités ¢, (v) = 0 pour tout x € S. On en déduit
que ’on a ‘uu = Id, donc que u est une isométrie. [

5.6. COROLLAIRE. Un réseau strictement ©-extréme est isolé (modulo
similitude) dans sa classe €, en particulier, lorsqu’il s’agit d’un maximum
absolu (strict), ce réseau est unique modulo similitude dans la réunion
7 des classes qui contiennent <.

En effet, il réalise a la fois par définition méme un maximum relatif
(ou absolu) de y dans .#, donc aussi dans ¥, et d’aprés 5.2 un minimum
absolu de y dans ¥.

[Une traduction du corollaire ci-dessus est qu’un tel réseau perd des
vecteurs minimaux par toute déformation suffisamment petite.]

6. ISODUALITE

Soit L un réseau de E, et soit L* son dual. Si 6 € O(E) est une isométrie
du réseau L sur son dual L* (on dit alors que L est c-isodual), 1’égalité
‘c = o~ ! montre que ¢ applique L* sur L, de sorte que 6?2 est un automor-
phisme du réseau L. On peut préciser ce résultat en introduisant le groupe
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