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348 A.-M. BERGÉ ET J. MARTINET

5. Résultats de classification

On conserve les notations et hypothèses des paragraphes précédents. On

suppose en outre que ^ est connexe.
On classe ci-dessous les réseaux selon la configuration de leurs vecteurs

minimaux, généralisant des notions introduites dans [Ber] et [B-M3] (et

auparavant de façon informelle dans [B-Ml], §5).

5.1. Définition. Soient L et L' deux réseaux appartenant à la famille
JS et S et S' leurs ensembles de vecteurs minimaux. On définit les relations
suivantes :

L' L s'il existe u e tel que L' u(L) et S' u(S),
L' < L s'il existe u e & tel que L' u{L) et S' C u(S).

La relation est une relation d'équivalence dans y, et la relation
induit un ordre (encore noté < sur l'ensemble des classes de -équivalence.

Le théorème suivant montre en particulier que les classes au sens de la

déf. 5.1 contiennent au plus un réseau strictement S?-extrême.

5.2. Théorème. Soit c£ une classe et soit L e un réseau

ïï?-eutactique.

(1) L'invariant d'Hermite atteint sur L son minimum dans la

réunion c£ des classes < fï.

(2) Si S(L) engendre E, ou si L est &-parfait, alors les réseaux

eutactiques de sont tous semblables à L.

[Si le nombre de classes est fini (comme c'est le cas dans les exemples

du §2), on obtient la finitude des réseaux strictement extrêmes pour le

groupe et même des réseaux §?-eutactiques possédant n vecteurs minimaux

indépendants.]

Démonstration On se ramène tout de suite au cas où ^ est de

déterminant 1. Soit L' u(L) e jr» u eun réseau tel que S' J u(S). On a

donc N(u(x)) N{L') pour tout x e S, c'est-à-dire (lemme 4.2,(i))

(pxVuu - Id) N(L') - N(L) pour tout x e S

De plus, comme Sf est connexe, il existe u e W (de trace évidemment

nulle) tel que luu exp(L>). On a donc

(5.3) (px(exp(i>) - Id) N(L') - N(L) pour tout x e S
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Posons, pour tout x e S,

VxO) (pA-(expO) - Id) - (px0)

D'après le lemme 4.2, (ii), on a l'inégalité \f/A-(^) ^ 0, avec égalité si et

seulement si v(x) 0. Par 5.3, on a

(5.4) 7V(Z/) - N(L) <px(u) + \|Jx(u) pour tout x e S

Puisque S est S^-eutactique, il existe des coefficients px > 0 tels que

Exms Px<Px(v) Tr(v) 0, d'où l'on tire, par combinaison linéaire des

relations 5.4:

(5.5) f S pà (N(L') -N(L)) 0 + F
\x e S J x e S

et donc N(L') - N(L) ^ 0, d'où y(L') ^ y (L), ce qui prouve (1).

Pour prouver (2), on suppose de plus que L' est ^F-eutactique et dans la

classe cd (i.e., on a S(Lf) u(S)). En échangeant les rôles de L' et de L,
on voit que l'on a N(L') - N(L) 0 (i.e., y (Z/) y (L)), et donc (par 5.5)

\jjx(u) 0 c'est-à-dire u(x) 0 pour tout x e S. Donc, S est inclus dans

Ker v. Cela entraîne que v est nul: c'est clair si S engendre E, et, si L' est

^ -parfait, cela résulte des égalités cp^ (l>) 0 pour tout x e S. On en déduit

que l'on a {uu Id, donc que u est une isométrie.

5.6. Corollaire. Un réseau strictement W-extrême est isolé (modulo
similitude) dans sa classe vf; en particulier, lorsqu'il s'agit d'un maximum
absolu (strict), ce réseau est unique modulo similitude dans la réunion
W des classes qui contiennent CS.

En effet, il réalise à la fois par définition même un maximum relatif
(ou absolu) de y dans donc aussi dans et d'après 5.2 un minimum
absolu de y dans cd.

[Une traduction du corollaire ci-dessus est qu'un tel réseau perd des

vecteurs minimaux par toute déformation suffisamment petite.]

6. IsoduALITÉ

Soit L un réseau de E, et soit L*sondual. Si o e 0(E) est une isométrie
du réseau Lsur son dual L*(ondit alors que est a-isodual), l'égalité
'o g"1 montre que a applique L* sur L,desorte que o2 est un automor-
phisme du réseau L. On peut préciser ce résultat en introduisant le groupe
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