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C'est ainsi que l'ensemble fini S est ^-parfait (resp. §?-eutactique) si et

seulement si les proj^ (/?*), x e S, engendrent §? (resp. s'il existe des

coefficients p^tous strictement positifs tels que projg^(Id) ExP*proj wiPx))-

4. Extrémalité dans

Pour faire une étude locale de la fonction d'Hermite dans la famille JS
on établit quelques résultats préliminaires relatifs à l'espace End5(E) des

endomorphismes symétriques de E, dont on note || || une norme.
On rappelle que l'on note exp l'application exponentielle de End(E) dans

G1(E); par restriction, elle induit un difféomorphisme de End5(E) sur
l'ensemble des automorphismes symétriques positifs de E.

Les deux énoncés suivants concernent le déterminant et la norme d'un
réseau. Le premier, qui se démontre par un calcul de valeurs propres, est

bien connu:

4.1. Lemme. Pour tout v g Enduis), on a det(expi>) eTv{u).

4.2. Lemme.

(i) Soit u e GUE1) et soit xeE. On a N(u(x)) N(x) + (px({uu - Id).

(ii) Pour tout v g End*(E), pour tout x e E, on a cpx(exp(i;) - Id)
^ (px(^), l'égalité ayant lieu si et seulement si u(x) « 0 (et alors les

deux membres sont nuls).

(iii) Soit S un ensemble fini de vecteurs non nuls de E et soit F
un cône fermé de End5(E) tel que, pour tout v ^ 0 appartenant
à E, le minimum minxe5(px(^) soit négatif Alors, il existe
a > 0 tel que, pour tout v e F avec 0 < || v || < a, on ait
minX6 5 cpx(exp(k>) - Id) < 0.

(iv) Soit L un réseau et soit S l'ensemble de ses vecteurs mini¬
maux. Pour u g G1(E) assez voisin de l'identité, on a N(u(L))

N(L) + minxeS(?x(tuu - Id).

Démonstration, (i) On a

u(x). u(x) - x.x luu(x). x - x .x ^uu - Id) (x) .x (p x(fuu - Id)

On prouve (ii) et (iii) par un argument de convexité. On note E la sphère
unité de End5(E). Pour tout w g E, pour tout x g E, on remarque que la
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fonction numérique fw:t ^ fw(t) cpx(exp(/w) - Id) est convexe, et que

fw(0) 0, /;(0) (p*(w).
En effet, en notant E,- les valeurs propres de w et (s,) une base orthonormale

de F formée de vecteurs propres de w, on a, en posant x
/„(/) 1), d'où les dérivées A(0 I et /;'(?)

£ °k]e"'' ^ 0, avec égalité si et seulement si w(x) 0.

V

(ii) Soient x e E et u =£ 0. On pose ü t et w - e E. La convexité
*

t
de la fonction fw précédente montre que cp^expu - Id) cpx(exp(z'iv) - Id)

^ ttyx(w) (pjc(tO, l'égalité exigeant w(x) u(x) — 0.

(iii) Soit w e E n E. Par hypothèse, il existe x e S tel que (px(w) soit

<0. La convexité de la fonction fw correspondante montre qu'il existe

tw> 0 tel que fw(t) soit négative pour tout t e]0, tw[. Il en est donc de

même de Mw(t) minx(cpx(exp(^w) - Id)), et, plus précisément, si Mw est

négative en un point t0, elle l'est sur tout l'intervalle ]0, £0[.

La fonction w' Mw> (tw) étant continue sur F n E, il existe un voisinage

ouvert V(w) de w dans FnE tel que, pour w' e V(w), Mw> soit

négatif en tWi et donc aussi sur l'intervalle ]0, tw]. Du recouvrement

UweFniEO) du compact F n Z, on extrait un recouvrement fini
L(w/), et l'on pose a min(/Wl--- tWr). Soit alors u e F tel que

0 < Il i#]| < a et soit w jpj v e E. Il existe /, 1 ^ i ^ r, tel que w appartienne

à V(Wi) et donc Mw{t) est < 0 sur l'intervalle ]0, a[C]0, tWj\.

(iv) Pour u suffisamment voisin de Id (modulo le groupe orthogonal), les

vecteurs minimaux du réseau u (L) proviennent de vecteurs minimaux de S, de

sorte que N(u(L)) minX6 sN(u(x)), d'où le résultat grâce à (i).

4.3. Lemme. Soit L un réseau, et soit u e Gl (F) tel que u{L)
soit semblable à L. Alors, si u est assez voisin de l'identité, u lui-même

est une similitude.

Démonstration. Le rapport de similitude Xu des deux réseaux est tel que
ddeUL)^ (detw)2, et tend donc vers 1 quand u tend vers l'identité.

Quitte à remplacer u par on peut donc supposer les réseaux

isométriques. Il existe alors une isométrie / avec (fu)(L) L. Donc, fu
appartient au sous-groupe discret G1(F) de Gl (F), et *uu {(fu) (fu)
appartient à l'ensemble discret des tuu, u e Gl (F). Pour u assez voisin de

l'identité, on a donc luu Id, ce qui signifie que u est une isométrie.
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Soit ÜF une famille de réseaux vérifiant les hypothèses et notations de

l'introduction: il existe un sous-groupe fermé ^ de Gl(ii) tel que les composantes

connexes de F sont des orbites de la composante connexe neutre
de On suppose que ^ est stable par transposition. L'espace tangent en

l'identité à la variété des tuu, u e est noté W. On suppose de plus que la

famille F est stable par homothéties, ou bien constituée de réseaux de même

déterminant.
La proposition suivante permet si besoin est de ne considérer que des

automorphismes symétriques de

4.4. Proposition. Soit ue et soient f et s ses composantes
orthogonale et symétrique. (On a u fs et s est défini positif.) Alors,

f et s appartiennent aussi à <f?°.

Démonstration. Comme tuu est défini positif, il existe u e Ends(E)
tel que {uu exp v. Comme ^ est stable par transposition, v est dans

l'espace tangent à (et en fait dans W). Alors, t exp f est un endo-
morphisme symétrique positif appartenant à ^f°, et l'on a t2 ruu, donc
t — s. Ainsi, s, et par suite /, sont dans °.

Nous sommes maintenant en mesure de démontrer un théorème à la
Voronoï.

On rappelle qu'un réseau L e F est dit strictement extrême s'il existe un
voisinage y// de L dans dans lequel tout réseau L ' non semblable à L vérifie
l'inégalité stricte y (Z/) < y (L).

4.5. Théorème. Soient F, ^ et W comme ci-dessus. Soit L un
réseau appartenant à F et soit S l'ensemble de ses vecteurs minimaux.
Alors:

(i) L est strictement extrême dans F si et seulement s'il est W-parfait
et W-eutactique.

(ii) Si L est extrême mais non strictement extrême, il existe dans F un
arc d'origine L, formé de réseaux extrêmes deux à deux non
semblables, de même invariant d'Hermite que L et qui, à l'exception
de L, ont tous même ensemble de vecteurs minimaux engendrant un
sous-espace strict de E.

Demonstration. Pour étudier l'invariant d'Hermite au voisinage de L,
on peut remplacer par la famille normalisée F0 {L' e Jr|det(L')

det(L)}, et donc, d'après 4.1, l'espace par &0 {u e W \ Tr(p) 0}.
L'invariant d'Hermite est alors proportionnel à la norme des réseaux.
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Supposons d'abord que S soit §?-parfait et ^-eutactique. D'après le

critère 3.2., on a donc, pour tout élément v & 0 de minxes<Px(v) < 0

(puisque Tr(u) 0). D'après le lemme 4.2, (iii) (appliqué à S et au cône

F §?o), il existe a > 0 tel que, pour u e avec 0 < || v || < a, on
ait minX6iS(px(exp(^) - Id) < 0. De même, il existe ß>0 tel que,

pour II uII < ß, A/((exp(jü) (L))- N(L)minxeS(px (exp(ju) - Id) (4.2, (iv)).

Soit s min (a, ß). Pour tout réseau L' appartenant au voisinage
|exp(|i>) (L), u e 0 < j|.y |) < s} de L dans J^o, on a N{L')

-N(L)<0, i.e. y(L')<y{L)\ dans y {L) est un maximum strict:
L est strictement extrême.

Supposons inversement que f e .f réalise un maximum de la fonction
d'Hermite dans un voisinage % de L dans que l'on suppose assez petit

pour que les vecteurs minimaux des réseaux qu'il contient proviennent de ceux
de L, et soit u e 5>0 tel que

(4.6) min ((px(ü)) ^ 0
X e S

Pour t > 0, on considère

(4.7) ut exp 6>j e et Lt ut(L) e

On suppose t assez petit pour que Lt appartienne à et pour que ut vérifie
la condition du lemme 4.3. Puisque Tr(^) 0, on a det ut 1 (cf. 4.1), et

donc det (Lt) det (L), et pour t assez petit (lemme 4.2, (iv) et (iii)), la
condition (4.6) entraîne

det (L)%/n (y(Lt) — y (L)) N(Lt) - N(L)
min (cpx(exp(^) - Id)) ^ tminq*x(v) ^ 0
x e S x e S

Le caractère maximal de y (L) dans % implique que les inégalités ci-dessus sont
des égalités, et donc que y{Lt) y (L). De plus, les vecteurs minimaux de Lt
sont les vecteurs ut(x), avec x e S tel que (p* (exp(^) - Id)) tq>x(u) 0,

c'est-à-dire, d'après 4.2, (ii), u(x) 0 donc ut(x) x. On a donc

(4.8) S(Lt) S n Ker(^)

Si l'on suppose y (L) strictement maximal dans la relation

y(Lt) y (L) exige que Lt soit semblable à L, et donc (lemme 4.3) que ut soit

une isométrie (rappelons que det(w,) 1), c'est-à-dire que v soit nul. Ainsi,
sous cette hypothèse, la condition (4.6) implique v 0: L est alors



DENSITÉ DANS UNE FAMILLE DE RÉSEAUX 347

-parfait et ^fl-eutactique, ce qui achève de prouver (i), compte tenu

de 3.4.

Sinon, d'après l'étude de la partie directe, S n'est pas à la fois -parfait

et gVeutactique, et il existe bien dans §?0 an élément v 0 vérifiant les

conditions (4.6). Les réseaux Lt construits à partir de v sont alors deux à deux

non semblables, et vérifient les propriétés énoncées dans (ii). D

4.9. Corollaire. Si un réseau L est strictement extrême pour un

groupe "C, le nombre s de couples ±x de ses vecteurs minimaux

vérifie

s ^ dim (S7)

et même, dans le cas où est formé d'éléments de déterminant ± 1,

5 ^ dim (SO + 1

Démonstration. La ^-perfection de l'ensemble S des vecteurs minimaux

implique 5 ^ dim (S?) - dim(^); si de plus ^ est formé d'éléments de

déterminant ±1, W est contenu dans le noyau de la trace, de sorte que
la relation de §?-eutaxie se traduit par une relation non triviale entre les

(px, x g S(L), et l'on a donc s ^ dim(<(px, a e S(L))) + 1.

[Remarquons que dans ce cas, L est aussi strictement extrême pour le

groupe R * ^ de dimension dim (SO +1.]
Sans hypothèse particulière sur il peut exister des réseaux extrêmes

qui ne le sont pas strictement. L'exemple suivant correspond à la famille
isoduale réductible de dimension 3 considérée dans [C-S3].

Soit o une rotation de R3 d'angle n/2 et d'axe une droite D dont on
note P le plan orthogonal, et soit L un réseau o- isodual. Il est en particulier

stable par o2, ce qui entraîne que L contient avec l'indice 1 ou 2 la
somme orthogonale L n D X L n P. On constate que l'indice 2 est impossible
pour les réseaux o-isoduaux, et que l'on a L n D — Z (et det(L n P) 1).
On a donc y (L) N(L) ^1, et les réseaux o-extrêmes sont ceux pour
lesquels L n P est de norme ^ 1. Ils constituent modulo isométries une
variété à bord de dimension 2. Aucun d'entre eux n'est strictement extrême,
et leurs vecteurs minimaux peuvent se limiter à ceux de D.
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