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C’est ainsi que ’ensemble fini S est @-parfait (resp. @-eutactique) si et
seulement si les projz(py), x € S, engendrent & (resp. s’il existe des
coefficients p, tous strictement positifs tels que projz (Id) = ¥, p.xprojz(px))-

4. EXTREMALITE DANS %

Pour faire une étude locale de la fonction d’Hermite dans la famille .7 ,
on établit quelques résultats préliminaires relatifs a 1’espace End* (&) des
endomorphismes symétriques de E, dont on note || . || une norme.

On rappelle que ’on note exp ’application exponentielle de End (£) dans
GI(E); par restriction, elle induit un difféomorphisme de Endf$(E) sur
I’ensemble des automorphismes symétriques positifs de E.

Les deux énoncés suivants concernent le déterminant et la norme d’un
réseau. Le premier, qui se démontre par un calcul de valeurs propres, est
bien connu:

4.1. LEMME. Pour tout v € Ends(E), on a det(expv) = eTr®,

4.2. LEMME.
(i) Soit ue GI(E) etsoit xe E.Ona N(u(x)) = N(x) + ¢, ('uu — 1d).
(1) Pour tout v e End*(E), pour tout xe€ E, on a ¢,(exp(v)—1d)

= 0, (v), [’égalité ayant lieu si et seulement si v(x) = 0 (et alors les
deux membres sont nuls).

(iii) Soit S un ensemble fini de vecteurs non nuls de E et soit F
un cone fermé de End*(E) tel que, pour tout v # 0 appartenant
a F, le minimum min,.s¢,(v) soit négatif. Alors, il existe
o >0 tel que, pour tout veF avec 0<]||v||<a, on ait
min, . s ¢, (exp (v) — Id) < 0.

(iv) Soit L un réseau et soit S [’ensemble de ses vecteurs mini-
maux. Pour u e GUE) assez voisin de I’identité, on a N(u(L))
= N(L) + min, ¢ s 0, (‘uu — 1d).

Démonstration. (i) On a
u(x) . u(x) —x.x="uu(x).x —x.x=('uu—Id) (x).x = ¢, (‘uu — Id) .

On prouve (11) et (iii) par un argument de convexité. On note ¥ la sphere
unité de End*(E). Pour tout w € £, pour tout x € E, on remarque que la
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fonction numérique f,: ¢+ f,(f) = ¢, (exp(tw) — Id) est convexe, et que
Sw(©0) =0, f,0) = 0.(w).

En effet, en notant A; les valeurs propres de w et (g;) une base orthonor-
male de E formée de vecteurs propres de w, on a, en posant x = ),.&;¢€;,
fw@) = YEX(e™—1), d’ou les dérivées f/(f) = L E he™ et f1(F)
= Y E2A2e™ > 0, avec égalité si et seulement si w(x) = 0.

.. . v .
(ii) Soient x € Eet v # 0. On pose ||v|| =t et w = - € . La convexité
4

de la fonction f,, précédente montre que @, (expv — Id) = ¢, (exp (tw) — 1d)
=10, (w) = 0,(v), I’égalité exigeant w(x) = v(x) = 0.

(iii) Soit w € FF'n X. Par hypothése, il existe x € S tel que ¢,(w) soit
< 0. La convexité de la fonction f, correspondante montre qu’il existe
t, > 0 tel que f, (¢) soit négative pour tout 7 €]0, ¢,,[. Il en est donc de
méme de M, (¢) = min, (¢, (exp(tw) — 1d)), et, plus précisément, si M, est
négative en un point #,, elle ’est sur tout ’intervalle ]0, #,[.

La fonction w'— M, (¢,) étant continue sur F n %, il existe un voisi-
nage ouvert V(w) de w dans Fn X tel que, pour w' € V(w), M,  soit
négatif en 7,, et donc aussi sur l’intervalle ]0,¢,]. Du recouvrement
Uwernz V(W) du compact Fn X, on extrait un recouvrement fini
Ui<i<rV(w;), et on pose o = min(¢,, - ¢, ). Soit alors v € F tel que
0<|lv]| < a etsoit w= ”—inue Y. Il existe i,1 < i< r, tel que w appar-
tienne a V(w;) et donc M, (f) est < O sur l’intervalle ]0, a[C]O, 7,,.].

(iv) Pour u suffisamment voisin de Id (modulo le groupe orthogonal), les
vecteurs minimaux du réseau u (L) proviennent de vecteurs minimaux de S, de
sorte que N(u (L)) = min, sN(u(x)), d’ou le résultat grace a (i). [

4.3. LEMME. Soit L un réseau, et soit u € GI(E) tel que u(L)
soit semblable a L. Alors, si u est assez voisin de l’identité, u Ilui-méme
est une similitude.

Démonstration. Le rapport de similitude A, des deux réseaux est tel que
A2 = %%)) = (det u)2, et tend donc vers 1 quand u tend vers I’identité.
Quitte a remplacer u par A, 'u, on peut donc supposer les réseaux iso-
métriques. Il existe alors une isométrie f avec (fu)(L) = L. Donc, fu
appartient au sous-groupe discret GIl(L) de GI(E), et ‘uu = '(fu) (fu)
appartient a I’ensemble discret des ‘vv, v € G1(L). Pour u assez voisin de

’identité, on a donc ‘uu = Id, ce qui signifie que u est une isométrie. L]
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Soit .# une famille de réseaux vérifiant les hypothéses et notations de
I’introduction: il existe un sous-groupe fermé ¢ de GI(E) tel que les compo-
santes connexes de .¥ sont des orbites de la composante connexe neutre & °
de <. On suppose que ¥ est stable par transposition. L’espace tangent en
I’identité a la variété des ‘wu, u € <, est noté @. On suppose de plus que la
famille .7 est stable par homothéties, ou bien constituée de réseaux de méme
déterminant.

La proposition suivante permet si besoin est de ne considérer que des
automorphismes symétriques de ¥ :

4.4. PROPOSITION. Soit ue ¥° etsoient f et s sescomposantes
orthogonale et symétrique. (On a u = fs et s est défini positif.) Alors,
f et s appartiennent aussi a < °.

Démonstration. Comme ‘uu est défini positif, il existe v € Ends(F)
tel que ‘uu = expv. Comme ¥ est stable par transposition, v est dans
I’espace tangent & ¢ (et en fait dans ). Alors, ¢ = exp% est un endo-
morphisme symétrique positif appartenant a <°, et ’on a #2 = ‘yu, donc
t = 5. Ainsi, s, et par suite f, sont dans ¥ °.

Nous sommes maintenant en mesure de démontrer un théoréme a la
Voronoi.

On rappelle qu’un réseau L € .7 est dit strictement extréme s’il existe un
voisinage % de L dans .% dans lequel tout réseau L’ non semblable d L vérifie
I’inégalité stricte y(L") < y(L).

4.5. THEOREME. Soient .7,% et & comme ci-dessus. Soit L un

réseau appartenant @ % et soit S [’ensemble de ses vecteurs minimaux.
Alors:

(1) L est strictement extréme dans .7 si et seulement s’il est & -parfait
et -eutactique.

(1) Si L est extréme mais non strictement extréme, il existe dans % un
arc d’origine L, formé de réseaux extrémes deux & deux non
semblables, de méme invariant d’Hermite que L et qui, a ’exception
de L, ont tous méme ensemble de vecteurs minimaux engendrant un
sous-espace Sstrict de E.

Démonstration. Pour étudier 'invariant d’Hermite au voisinage de L,
on peut remplacer .7 par la famille normalisée .7, = {L' € .7 | det(L")
= det(L)}, et donc, d’aprés 4.1, 1’espace & par Oo={ve ?|Tr@) = 0}.
L’invariant d’Hermite est alors proportionnel a la norme des réseaux.



346 A.-M. BERGE ET J. MARTINET

Supposons d’abord que S soit &-parfait et Z-eutactique. D’aprés le
critere 3.2., on a donc, pour tout élément v # 0 de @, min, 50, (V) <0
(puisque Tr(v) = 0). D’aprés le lemme 4.2, (iii)) (appliqué a S et au cOne
F = ©,), il existe a >0 tel que, pour ve &, avec 0<||v||<a, on
ait min, . 5@, (exp(%v) — Id) < 0. De méme, il existe B >0 tel que,
pour |[v|| < B, N((exp(50) @)) — N(L) = min, 5 (exp (30) — 1d) (4.2,(v).
Soit € = min(a, ). Pour tout réseau L’ appartenant au voisinage
U = {exp(%u) (L),ve @y,0<]||v||]<e} de L dans .%,, on a N(L')
- NL)<0, i.e. y(L)<vy(L): dans %, y(L) est un maximum strict:
L est strictement extréme.

Supposons inversement que L € .¥ réalise un maximum de la fonction
d’Hermite dans un voisinage % de L dans .7, que ’on suppose assez petit
pour que les vecteurs minimaux des réseaux qu’il contient proviennent de ceux
de L, et soit v € 7, tel que
(4.6) min (@, (v)) = 0.

xesS

Pour ¢ > 0, on considére

t
4.7) U, = exp (5 U) e+ et L,=u,l)e %,.

On suppose ? assez petit pour que L, appartienne a %, et pour que u, vérifie
la condition du lemme 4.3. Puisque Tr(v) = 0, on a detu, = 1 (cf. 4.1), et
donc det(L,) = det (L), et pour ¢ assez petit (lemme 4.2,(iv) et (iii)), la
condition (4.6) entraine

det(L)V"(y(L,) —v(L)) = N(L,) — N(L)
= min (@, (exp(tv) — Id)) > tmin @, (v) > 0.

xes xeS
Le caractére maximal de y (L) dans % implique que les inégalités ci-dessus sont
des égalités, et donc que y(L,) = y(L). De plus, les vecteurs minimaux de L,
sont les vecteurs u,(x), avec x € S tel que ¢, (exp(tv) — Id)) = t¢,(v) = 0,
c’est-a-dire, d’apres 4.2, (ii), v(x) = 0 donc u,(x) = x. On a donc

(4.8) S(L,) = S N Ker(v) .

Si P’on suppose vy (L) strictement maximal dans %, la relation
v(L,) = v(L) exige que L, soit semblable a L, et donc (lemme 4.3) que u, soit
une isométrie (rappelons que det (u,) = 1), c’est-a-dire que v soit nul. Ainsi,
sous cette hypothése, la condition (4.6) implique v = 0: L est alors
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7 ,-parfait et @ ,-eutactique, ce qui achéve de prouver (i), compte tenu
de 3.4.

Sinon, d’aprés ’étude de la partie directe, S n’est pas a la fois @ (-parfait
et @ ,-eutactique, et il existe bien dans %, un élément v # 0 vérifiant les
conditions (4.6). Les réseaux L, construits a partir de v sont alors deux a deux
non semblables, et vérifient les propriétés énoncées dans Gi). O

49  COROLLAIRE. Si un réseau L est strictement exiréme pour un
groupe ¢, le nombre s de couples +x de ses vecteurs minimaux
vérifie

s > dim(¥¢),

et méme, dans le cas o & est formé d’éléments de déterminant *1,

s>dim(¥) + 1.

Démonstration. La @ -perfection de I’ensemble S des vecteurs minimaux
implique s > dim(Z) = dim(¥); si de plus & est formé d’éléments de
déterminant + 1, & est contenu dans le noyau de la trace, de sorte que
la relation de #-eutaxie se traduit par une relation non triviale entre les
®., x € S(L), et ’on a donc s > dim({ ®,, x e S(L)Y) + 1. [

[Remarquons que dans ce cas, L est aussi strictement extréme pour le
groupe ¢’ = R*¥ de dimension dim(¥¢) + 1.]

Sans hypothése particuliere sur ¢, il peut exister des réseaux extrémes
qui ne le sont pas strictement. L’exemple suivant correspond a la famille
isoduale réductible de dimension 3 considérée dans [C-S3].

Soit ¢ une rotation de R3 d’angle n/2 et d’axe une droite D dont on
note P le plan orthogonal, et soit L un réseau o- isodual. Il est en parti-
culier stable par 62, ce qui entraine que L contient avec ’indice 1 ou 2 la
somme orthogonale L n D L L n P. On constate que ’indice 2 est impossible
pour les réseaux c-isoduaux, et que 'on a L n D = Z (et det(L n P) = 1).
On a donc y(L) = N(L) <1, et les réseaux c-extrémes sont ceux pour
lesquels L N P est de norme > 1. Ils constituent modulo isométries une
variété a bord de dimension 2. Aucun d’entre eux n’est strictement extréme,
et leurs vecteurs minimaux peuvent se limiter & ceux de D.
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