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340 A.-M. BERGE ET J. MARTINET

3. PERFECTION ET EUTAXIE

Le but de ce § est d’étendre au sous-espace @ les notions classiques de
Voronoi, qui correspondent au cas ou @ est I’espace End*(F) tout entier.
Pour tout x € E, on note ¢, la forme linéaire sur End*(£) définie par

0x(v) = v(x).x.

3.1. DEFINITIONS. Soit % un sous-espace vectoriel de Ends(E) et
soit S un ensemble fini de vecteurs non nuls de E.

(1) S est @-parfait si les restrictions a & des formes linéaires ¢, , x € S,
engendrent le dual @* de @, i.e. s’il n’existe pas dans © d’endo-
morphisme v non nul tel que ¢,(v) = 0 pour tout x € S;

(2) S est @-eutactique si la restriction a @ de la forme linéaire trace
(notée Tr) est combinaison linéaire a coefficients strictement positifs
des restrictions a @ des ¢,,x € S.

On emploie la méme terminologie pour un réseau en prenant pour ensemble
S I’ensemble de ses vecteurs minimaux.

On remarque que, si S est parfait ou eutactique pour @, il I’est éga-
lement pour tout sous-espace vectoriel ©’ de ©.

De méme, il est clair que tout ensemble fini de vecteurs de E contenant
un ensemble @ -parfait est & -parfait.

On peut montrer que la propriété «@-eutactique et @-parfait» se
transmet également; cela résulte par exemple de la caractérisation suivante:

3.2. PROPOSITION. Soit @ wun sous-espace vectoriel de E, et soit S
un ensemble fini de vecteurs non nuls de E. Alors, les conditions suivantes
sont équivalentes:

(1) S esta la fois ©-parfait et ©-eutactique,
2) v=0 est l'unique solution dans © du systeme d’inéquations
linéaires
Q,(V) =20 pourtour xeS et Tr()<O0.

Démonstration. Supposons d’abord que S vérifie (1) et soit v € © tel que

@0,(v) 20 pourtout xeS et Tr(v) <O0.

Dans la relation de @-eutaxie appliquée a v

Tr(v) = ), p<0x(v), px> 0 pour tout x,

xesS
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le premier membre est donc < 0 et le second > 0, ils sont donc nuls, et
puisque tous les p, @, (v) sont positifs ou nuls et les p, positifs strictement,
on obtient ¢, (v) = 0 pour tout x € S, donc v = 0 puisque S est & -parfait.
La condition (2) est donc vérifiée.

Réciproquement, supposons (2) vérifiée, et montrons que S est & -parfait.
Soit donc v € @ tel que @, (v) = 0 pour tout x € S; comme — v vérifie cette
méme hypothese, on peut, quitte a changer v en — v, supposer Tr(v) < 0.
Par (2), v est donc nul.

Pour montrer la @ -eutaxie, ce qui achévera la preuve de la proposition,
on utilise le théoréme de programmation linéaire dii a Stiemke et exhumé
par Barnes ([St]):

3.3. THEOREME (STIEMKE). Soit V un espace vectoriel réel de
dimenson finie, et soient F,,F,,---,F,, des formes linéaires sur V.
Les propriétés suivantes sont équivalentes:

(@) Toute solution v eV du systeme d’inéguations
Fw)=20,i=1,2, - m,
est solution du systeme d’équations
Fiw)=0,i=1,2,....,m.

(b) 1l existe des nombres réels p,,p,, ", pm Strictement positifs tels
que pFy+ pyFy+ o0 + p,F, = 0.

Appliquons ce résultat & V' = 7, et aux restrictions 4 & des formes — Tr
et ¢,,x € §. La condition (b) ci-dessus est exactement la #-eutaxie de S ;
quant a (a), elle est certainement vérifiée, puisque (2) dit que toute solution
v € V du systéme d’inéquations est nulle. [

Dans le cas ou # contient I’identité Id, on peut le remplacer par ’hyper-
plan 7, C Z, orthogonal & I’identité pour le produit scalaire (v, v’)
= Tr(vv"),

Zo={ve & |Tr(v) =0} .

3.4. PROPOSITION. Soit @ un sous-espace de Ends(E) contenant
Pidentité, soit 7, [I’hyperplan de & formé des endomorphismes de trace
nulle, et soit S ={xy, -,x;} un ensemble fini de vecteurs unitaires

de E. On note @' la restriction @ % de la forme linéaire ¢, , et 0
sa restriction a . Alors:

(1) 7 -eutaxie et 7 -eutaxie sont équivalentes.
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(2) Pour que S soit ©-parfait, il faut et il suffit qu’il soit © ,-parfait
et que les restrictions ¢, a @, vérifient une relation
Y 0;0,=0, avec Y a;#0.
1<igs i

(3) S est U-parfait et @-eutactique si et seulement s’il est @ y-parfait
et ©y-eutactique.

Démonstration. (1) Supposons que S vérifie une relation Zip,-(pf) =0,
pi >0, de Do-cutaxie. Alors il vérifie la relation de Z-eutaxie ¥, 35 ¢'

= Tr. En effet, soit v € @ et soit vy = v — %Tr(u) Id sa projection ortho-
gonale sur @,. On a Y .p;0'(vy) = 0, c’est-a-dire

L.p:01(0) = H2 Tr(v) @i (Id) = L2 Tr(v) .
La réciproque est triviale.

(2) Si S est @-parfait, il est trivialement @ ,-parfait; de plus, la
restriction Tr a @ de la forme trace s’écrit sur les ¢@¢ (qui par hypothése
engendrent ©%*):Tr = ¥ .a;0’, relation qui, appliquée a Id, donne
n= Y, 0;, et, par restriction a Z,,0= Y .0,;0§.

Réciproquement, supposons qu’il existe une relation Y, cics@ i(pf) =0,
avec ) .o;# 0; soit v = vy + %Tr(v)ld, Vo € Oy, un élément de & tel
que ¢’(v) = 0 pour tout i. On a donc @j(vy) + > Tr(v) = 0 pour tout i,
d’ot Pon déduit ¥,0;0f(ve) + ZX Tr(v) =0, ol Y.a,;05(w) =0 et
Y .o; # 0. Donc Tr(v) = 0, et v = v, appartient & ©,. Si S est ©,-parfait,
on déduit alors de la relation ¢‘(v) = 0 pour tout i que v est nul. Ainsi, S est
O -parfait.

(3) se déduit immédiatement de (1) et (2), puisque toute relation de
Z,-eutaxie ¥, p;@q =0, p; > 0 est telle que Y p; #0. [J

Au produit scalaire (v, w) = Tr(vw) dans I’espace End*(F) est associée
une identification de Ends(F) a son dual, transformant v € End*(£) en
¢@: wr (v, w). Cette dualité associe a I’application identique la forme linéaire
trace, et, pour x # 0 € E, a la projection orthogonale p, de £ sur Rx la
forme linéaire ,—V—z—)}—) Q.

La dualité du sous-espace vectoriel @ sur son dual @ * induite par I’iden-
tification précédente est

projz (v) < restrz () ,

ou projz et restrz désignent respectivement la projection orthogonale sur @
et la restriction a &, comme on le voit en remarquant que, pour w € @,

o (w) = v, w) = {projz(v), w).
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C’est ainsi que ’ensemble fini S est @-parfait (resp. @-eutactique) si et
seulement si les projz(py), x € S, engendrent & (resp. s’il existe des
coefficients p, tous strictement positifs tels que projz (Id) = ¥, p.xprojz(px))-

4. EXTREMALITE DANS %

Pour faire une étude locale de la fonction d’Hermite dans la famille .7 ,
on établit quelques résultats préliminaires relatifs a 1’espace End* (&) des
endomorphismes symétriques de E, dont on note || . || une norme.

On rappelle que ’on note exp ’application exponentielle de End (£) dans
GI(E); par restriction, elle induit un difféomorphisme de Endf$(E) sur
I’ensemble des automorphismes symétriques positifs de E.

Les deux énoncés suivants concernent le déterminant et la norme d’un
réseau. Le premier, qui se démontre par un calcul de valeurs propres, est
bien connu:

4.1. LEMME. Pour tout v € Ends(E), on a det(expv) = eTr®,

4.2. LEMME.
(i) Soit ue GI(E) etsoit xe E.Ona N(u(x)) = N(x) + ¢, ('uu — 1d).
(1) Pour tout v e End*(E), pour tout xe€ E, on a ¢,(exp(v)—1d)

= 0, (v), [’égalité ayant lieu si et seulement si v(x) = 0 (et alors les
deux membres sont nuls).

(iii) Soit S un ensemble fini de vecteurs non nuls de E et soit F
un cone fermé de End*(E) tel que, pour tout v # 0 appartenant
a F, le minimum min,.s¢,(v) soit négatif. Alors, il existe
o >0 tel que, pour tout veF avec 0<]||v||<a, on ait
min, . s ¢, (exp (v) — Id) < 0.

(iv) Soit L un réseau et soit S [’ensemble de ses vecteurs mini-
maux. Pour u e GUE) assez voisin de I’identité, on a N(u(L))
= N(L) + min, ¢ s 0, (‘uu — 1d).

Démonstration. (i) On a
u(x) . u(x) —x.x="uu(x).x —x.x=('uu—Id) (x).x = ¢, (‘uu — Id) .

On prouve (11) et (iii) par un argument de convexité. On note ¥ la sphere
unité de End*(E). Pour tout w € £, pour tout x € E, on remarque que la
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