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(notion introduite par Conway et Sloane dans l'appendice de [B-S], voir

aussi [C-S3]).
La caractérisation des réseaux strictement extrêmes est l'objet des §§3 et 4.

Le § 5 est consacré à une classification des réseaux de la famille selon

la configuration de leurs vecteurs minimaux. On en déduit la finitude du

nombre de réseaux extrêmes (modulo similitudes) dans le cas des G-réseaux

(résultat obtenu antérieurement par Jaquet dans [Ja]) et dans celui des

réseaux isoduaux.
Les réseaux isoduaux sont l'objet des §§6 à 8. On étudie plus particulièrement

au §7 les notions de réseaux isoduaux symplectiques et orthogonaux
(la première notion est celle de [C-S2]), et l'on classe au §8 jusqu'à la

dimension 4 les réseaux symplectiques qui sont extrêmes en tant que réseaux

isoduaux. La méthode utilisée repose sur l'introduction au §6 de la notion plus

générale de réseau normal (cf. déf. 6.5).
Les auteurs remercient Christophe Bavard pour ses remarques.

2. Exemples

Soit f un sous-groupe fermé de Gl(is) et soit L0 un réseau de E. La
constante d'Hermite prend les mêmes valeurs sur les images de L0 par 3f

et par le groupe R*3f engendré par 3F et les homothéties positives. Si 3f

contient les homothéties positives, soit 3F' son sous-groupe formé des éléments
de déterminant ± 1. Alors, on a R* 3F', et ce produit est direct, si

bien que W est connexe si et seulement si 3F' l'est. Pour l'étude de l'invariant

d'Hermite, il est indifférent de considérer 3F ou 3F', et ce dernier choix

permet de se restreindre aux réseaux de déterminant 1.

L'une des formes du théorème de compacité de Mahler est l'assertion
suivante: une famille de réseaux de déterminants bornés et de normes minorées

par une constante strictement positive est d'adhérence compacte. Soit une
famille de réseaux de la forme 3FL0 pour un groupe comme ci-dessus et
soit y sup i 6 .y y (L). Soit Lp une suite de réseaux de sur laquelle
y(Lp) tend vers y. Si 3f est de déterminant 1, le théorème de compacité de

Mahler s'applique à la suite Lp, dont on peut extraire une sous-suite
convergente dans et le cas d'un groupe contenant les homothéties positives
se ramène au précédent. Si la famille est fermée dans #, ce qui est le cas
dans les exemples ci-dessous, puisque 3f est fermé dans GUE1), la borne y
est alors atteinte sur FF et l'existence de réseaux critiques pour est
assurée.
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Dans de nombreux exemples, le groupe est l'ensemble des éléments u
d'une sous-algèbre A de End(£) munie d'une involution i d'une algèbre

d'endomorphismes qui vérifient l'égalité uux 1. Dans ce cas, l'espace

tangent en l'élément neutre du groupe ^ est donné par la formule

^(f) {oeA\üx= - v}

(Bourbaki, Lie III, p. 145, prop. 37). La détermination de l'espace W se

fait ensuite en observant que W est l'image de par l'application
V h* lv + Ü.

2.1. Exemple. L'espace des réseaux de E. Ici, la famille
est l'ensemble ^ de tous les réseaux de E. On prend ^ Gl + (£) et

W — End^E). Voronoï a montré que les réseaux extrêmes sont les réseaux

parfaits et eutactiques, qu'ils sont strictement extrêmes, et que le nombre
de classes de similitude de réseaux parfaits est fini. De plus, Korkine et

Zolotareff ([K-Z]) ont montré que les réseaux parfaits sont rationnels (i.e.
proportionnels à des réseaux entiers). Les questions soulevées dans l'introduction
sont donc toutes résolues dans ce cas. En outre, Voronoï a donné un algorithme
permettant de trouver tous les réseaux parfaits à partir de l'un d'entre eux.

2.2. Exemple. L'espace des G-réseaux. On se donne un sous-

groupe fini G du groupe orthogonal 0(£), et l'on considère la famille
des réseaux stables par G. On peut prendre pour W le commutant de G

dans G ICE1) (ou sa composante connexe neutre). L'espace W est le commutant
de G dans Enduis). La caractérisation des réseaux «G-extrêmes» comme
réseaux ^-parfaits et ^-eutactiques est démontrée dans [B-M2] (th. 2.10),
mais la démonstration de la finitude des classes de similitude de réseaux

G-parfaits (prop. 3.12) est incorrecte. [Il n'est pas prouvé que les changements
de bases utilisés dans la démonstration de 3.12 puissent se faire par
des éléments de ^.] Une démonstration correcte vient d'être obtenue par
Jaquet ([Ja]). Une autre démonstration en est proposée à la fin du §6. Un

«algorithme de Voronoï» est exposé dans [B-M-S]. Les composantes connexes
du graphe de Voronoï sont en bijection avec les classes de représentations

intégrales de G ([B-M-S], th. 2.9).

2.3. Exemple. Les réseaux dual-extrêmes. Il s'agit d'une notion
introduite dans [B-Ml]. On définit un «invariant d'Hermite dual» y' par
y'(L) (N(L)N(L*)) l/2(L* {x e E | Vy e E,x.y e Z} est le réseau dual
de L). On a la relation de moyenne y'{L) (y(L)y(L*)) 1/2 et l'égalité y'(L)
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y'(L*). On dit qu'un réseau est dual-extrême s'il réalise un maximum

local de y'. Considérons alors dans l'espace ExE de dimension 2n la

famille des sommes orthogonales L ± L* dans lesquelles L parcourt

l'ensemble 'M de tous les réseaux de E. Soit ^ le sous-groupe de Gl (E x E)
formé des couples {u, tu~!), u e Gl + (i?). Les réseaux de la forme L _L L*
constituent une unique orbite sous l'action de On a det(X_l_L*) 1

et donc y (L L L*) - min [TV(L), TV(L*)].
Supposons que l'on ait N(L) =£ N(L*), par exemple N(L) < N(L*) pour

fixer les idées, et considérons les homothéties de rapport X croissant de 1

à (N(L)/N(L*))1/2. Ces homothéties font croître strictement l'invariant
d'Hermite. Donc, les maxima locaux de y (L±L*) sont atteints sur le

fermé d'équation N(L) N(L*). Mais, sur cet ensemble, on a l'égalité

y '(L) y {L J_ L*). Les maxima locaux de l'invariant y' sur les réseaux

de E s'interprètent donc comme maxima locaux de l'invariant y sur une sous-

famille de réseaux de E x E.

L'espace W est le sous-ensemble de EndS{E) x EndS(E) formé des

couples (u, - u). On vérifie facilement que les notions de dual-perfection
et de dual-eutaxie ([B-Ml], déf. 3.10, p. 24) coïncident avec celles de

^-perfection et de §?-eutaxie. La finitude de l'ensemble des classes de

similitude de réseaux dual-extrêmes vient d'être démontrée par le premier
auteur ([Ber]). La dual-perfection n'assure pas cette finitude (il existe des

familles à 1 paramètre de réseaux dual-parfaits). On remédie à cet inconvénient
en élargissant cette famille par homothétie, ce qui revient à remplacer W par

RId.
On ne connaît pas d'adaptation de l'algorithme de Voronoï à cette

situation.

2.4. Exemple. Les réseaux isoduaux. Certains réseaux célèbres

(v42,D4, ESi réseaux de Coxeter-Todd, de Barnes-Wall, de Leech, diverses
variantes du réseau de Quebbemann) sont semblables à leur dual, ce qui
entraîne que les invariants y et y' prennent la même valeur sur ces réseaux.
La normalisation N(L) N(L*) déjà utilisée dans l'exemple 2.3 permet de se

restreindre au cas des réseaux isométriques à leur dual; ce sont les réseaux
isoduaux, notion introduite par Conway et Sloane dans [C-S2]. Nous devons
préciser cette définition: étant donné un élément g e 0(E), on dit qu'un
réseau L est o-isodual si l'on a L* o(L), cf. §§6-8. Alors, l'ensemble
des réseaux G-isoduaux (s'il n'est pas vide) constitue une orbite sous l'action
d'un sous-groupe de Lie de Gl {E).
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