Zeitschrift: L'Enseignement Mathématique
Herausgeber: Commission Internationale de I'Enseignement Mathématique

Band: 41 (1995)

Heft: 3-4: L'ENSEIGNEMENT MATHEMATIQUE

Artikel: DENSITE DANS DES FAMILLES DE RESEAUX. APPLICATION AUX
RESEAUX ISODUAUX

Autor: Bergé, Anne-Marie / Martinet, Jacques

Kapitel: 2. Exemples

DOI: https://doi.org/10.5169/seals-61830

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 25.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-61830
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

DENSITE DANS UNE FAMILLE DE RESEAUX 337

(notion introduite par Conway et Sloane dans 1’appendice de [B-S], voir
aussi [C-S3]).

La caractérisation des réseaux strictement extrémes est I’objet des §§3 et 4.

Le §5 est consacré a une classification des réseaux de la famille . selon
la configuration de leurs vecteurs minimaux. On en déduit la finitude du
nombre de réseaux extrémes (modulo similitudes) dans le cas des G-réseaux
(résultat obtenu antérieurement par Jaquet dans [Ja]) et dans celui des
réseaux isoduaux.

Les réseaux isoduaux sont I’objet des §§6 a 8. On étudie plus particulie-
rement au §7 les notions de réseaux isoduaux symplectiques et orthogonaux
(la premiére notion est celle de [C-S2]), et I'on classe au §8 jusqu’a la
dimension 4 les réseaux symplectiques qui sont extrémes en tant que réseaux
isoduaux. La méthode utilisée repose sur ’introduction au § 6 de la notion plus
générale de réseau normal (cf. déf. 6.5).

Les auteurs remercient Christophe Bavard pour ses remarques.

2. EXEMPLES

Soit ¥ un sous-groupe fermé de GI(E) et soit L, un réseau de E. La
constante d’Hermite prend les mémes valeurs sur les images de L, par ¢
et par le groupe R* ¢ engendré par ¥ et les homothéties positives. Si ¥
contient les homothéties positives, soit "’ son sous-groupe formé des éléments
de déterminant + 1. Alors, on a ¥ = R* &, et ce produit est direct, si
bien que ¥ est connexe si et seulement si ¥ I’est. Pour I’étude de I’inva-
riant d’Hermite, il est indifférent de considérer ¥ ou ¥, et ce dernier choix
permet de se restreindre aux réseaux de déterminant 1.

L’une des formes du théoreme de compacité de Mahler est 1’assertion
suivante: une famille de réseaux de déterminants bornés et de normes minorées
par une constante strictement positive est d’adhérence compacte. Soit .# une
famille de réseaux de la forme ¥L, pour un groupe comme ci-dessus et
soit ¥ = sup, e+ Y(L). Soit L, une suite de réseaux de .# sur laquelle
Y(L,) tend vers y. Si & est de déterminant 1, le théoréme de compacité de
Mahler s’applique a la suite L,, dont on peut extraire une sous-suite
convergente dans .7, et le cas d’un groupe contenant les homothéties positives
se ramene au précédent. Si la famille .% est fermée dans #, ce qui est le cas
dans les exemples ci-dessous, puisque ¥ est fermé dans GI(E), la borne Y

est alors atteinte sur . et I’existence de réseaux critiques pour .7 est
assurée.
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Dans de nombreux exemples, le groupe ¥ est I’ensemble des éléments u
d’une sous-algebre A de End(F) munie d’une involution v d’une algébre
d’endomorphismes qui vérifient 1’égalité wu' = 1. Dans ce cas, l’espace
tangent 7 (<) en I’élément neutre du groupe ¢ est donné par la formule

7(Z)y={ved|v =~}

(Bourbaki, Lie III, p. 145, prop. 37). La détermination de 1’espace % se
fait ensuite en observant que 7 est ’image de 7 (%) par ’application
v Y+ 0.

2.1. EXEMPLE. L’ESPACE DES RESEAUX DE E. Ici, la famille .7
est I’ensemble 7 de tous les réseaux de E. On prend ¥ = Gl+(E) et
7z = Ends(E). Voronoi a montré que les réseaux extrémes sont les réseaux
parfaits et eutactiques, qu’ils sont strictement extrémes, et que le nombre
de classes de similitude de réseaux parfaits est fini. De plus, Korkine et
Zolotareff ([K-Z]) ont montré que les réseaux parfaits sont rationnels (i.e. pro-
portionnels & des réseaux entiers). Les questions soulevées dans 1’introduction
sont donc toutes résolues dans ce cas. En outre, Voronoi a donné un algorithme
permettant de trouver tous les réseaux parfaits a partir de ’un d’entre eux.

2.2. EXEMPLE. L’ESPACE DES G-RESEAUX. On se donne un sous-
groupe fini G du groupe orthogonal O(E), et ’on considére la famille %,
des réseaux stables par G. On peut prendre pour % le commutant de G
dans G1(£) (ou sa composante connexe neutre). L’espace 7 est le commutant
de G dans Ends(F). La caractérisation des réseaux «G-extrémes» comme
réseaux 7 -parfaits et 7 -eutactiques est démontrée dans [B-M2] (th. 2.10),
mais la démonstration de la finitude des classes de similitude de réseaux
G-parfaits (prop. 3.12) est incorrecte. [Il n’est pas prouvé que les changements
de bases utilisés dans la démonstration de 3.12 puissent se faire par
des éléments de ¥.] Une démonstration correcte vient d’étre obtenue par
Jaquet ([Ja]). Une autre démonstration en est proposée a la fin du §6. Un
«algorithme de Voronoi» est expos¢ dans [B-M-S]. Les composantes connexes
du graphe de Voronoi sont en bijection avec les classes de représentations
intégrales de G ([B-M-S], th. 2.9).

2.3. EXEMPLE. LES RESEAUX DUAL-EXTREMES. Il s’agit d’une notion
introduite dans [B-M1]. On définit un «invariant d’Hermite dual» vy’ par
v'(L) = (NL)NL*)V2(L* = {x e E|Vy e E,x.y € Z} est le réseau dual
de L). On a la relation de moyenne v'(L) = (y(L)y(L*))!/2 et I’égalité vy’ (L)
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= v'(L*). On dit qu’un réseau est dual-extréme §’il réalise un maximum
local de y’. Considérons alors dans l’espace E X E de dimension 2n la
famille .% des sommes orthogonales L L L* dans lesquelles L parcourt
’ensemble # de tous les réseaux de E. Soit ¢ le sous-groupe de GI(E X E)
formé des couples (u, ‘u~"'), u € G1+(E). Les réseaux de la forme L 1 L*
constituent une unique orbite sous l’action de ¥. On a det(L L L*) =1
et donc y(L L L*) = min[N(L), N(L*)].

Supposons que 1’on ait N(L) # N(L*), par exemple N(L) < N(L*) pour
fixer les idées, et considérons les homothéties de rapport A croissant de 1
a (N(L)/N(L*)'2. Ces homothéties font croitre strictement I’invariant
d’Hermite. Donc, les maxima locaux de y(L L L*) sont atteints sur le
fermé d’équation N(L) = N(L*). Mais, sur cet ensemble, on a I’égalité
v'(L) = y(L L L*). Les maxima locaux de l’invariant y’ sur les réseaux
de E s’interprétent donc comme maxima locaux de I’invariant y sur une sous-
famille de réseaux de £ X E.

L’espace @ est le sous-ensemble de End®(E) X Ends(E) forme des
couples (v, —v). On vérifie facilement que les notions de dual-perfection
et de dual-eutaxie ([B-M1], déf. 3.10, p. 24) coincident avec celles de
@ -perfection et de @-eutaxie. La finitude de I’ensemble des classes de
similitude de réseaux dual-extrémes vient d’€tre démontrée par le premier
auteur ([Ber]). La dual-perfection n’assure pas cette finitude (il existe des
familles a 1 parametre de réseaux dual-parfaits). On remédie a cet inconvénient
en ¢élargissant cette famille par homothétie, ce qui revient a remplacer & par
© + RId.

On ne connait pas d’adaptation de I’algorithme de Voronoi a cette
situation.

2.4. EXEMPLE. LES RESEAUX ISODUAUX. Certains réseaux célébres
(A,, Dy, Eg, réseaux de Coxeter-Todd, de Barnes-Wall, de Leech, diverses
variantes du réseau de Quebbemann) sont semblables a leur dual, ce qui
entraine que les invariants y et v’ prennent la méme valeur sur ces réseaux.
La normalisation N(L) = N(L*) déja utilisée dans I’exemple 2.3 permet de se
restreindre au cas des réseaux isométriques a leur dual; ce sont les réseaux
isoduaux, notion introduite par Conway et Sloane dans [C-S2]. Nous devons
préciser cette définition: étant donné un élément ¢ € O(E), on dit qu’un
reseau L est c-isodual si 'on a L* = o(L), cf. §§6-8. Alors, I’ensemble

des réseaux c-isoduaux (s’il n’est pas vide) constitue une orbite sous 1’action
d’un sous-groupe de Lie de GI(E).
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