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DENSITE DANS DES FAMILLES DE RESEAUX.
APPLICATION AUX RESEAUX ISODUAUX

par Anne-Marie BERGE et Jacques MARTINET'

RESUME. On s’intéresse dans cet article & la densité des empilements de spheres
associés a des familles de réseaux qui se déduisent de I’un d’entre eux par ’action d’un
sous-groupe fermé du groupe linéaire. La théorie des groupes de Lie permet de donner
une caractérisation a la Voronoi des maxima locaux de densité, recouvrant de tres
nombreuses situations étudiées auparavant. On applique ensuite ces méthodes a 1’étude
des réseaux isoduaux récemment définis par Conway et Sloane.

ABSTRACT. We study in this paper the density of sphere packings arising from
families of lattices which consist in the orbit of one of them under the action of a closed
subgroup of the linear group. The theory of Lie groups yields a characterization ““a la
Voronoi” of the local maxima of density which contains many previously known
examples. These methods are then applied to isodual lattices, recently defined
by Conway and Sloane.

1. INTRODUCTION

Soit £ un espace euclidien de dimension #, et soit % 1’espace des réseaux
de E, muni de la topologie pour laquelle un systéme fondamental de voisi-
nages d’un réseau L s’obtient en associant a tout voisinage 7 de
Id dans GI(E) I’ensemble des réseaux u(L), u € 7. Pour x € E, la norme
de x est N(x) = x.x (le carré de la norme euclidienne). A toute base
7 = (ei,ey,...,e,) de E, on associe sa matrice de Gram Gram /(%)
= ((e;. e;)). L’invariant d’Hermite d’un réseau L est y (L) = N(L)det(L) ~!/~,
ou N(L) =inf,c; ,»oN(x) est la norme ou minimum de L et det(L) est
le déterminant de L (déterminant de la matrice de Gram d’une base de L);
Y(L) ne dépend que de la classe de similitude de L, et y7/2 (L) est
proportionnel a la densit¢é de I’empilement de sphéres associé 2 L;
Yn =SUpre # Y(L) est la constante d’Hermite pour la dimension n.

I Membres du laboratoire U.M.R. 9936 du C.N.R.S.
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Nous étudions ici la densité dans des familles .7 de réseaux qui sont des
orbites sous 1’action d’un sous-groupe fermé ¥ du groupe linéaire GI(E),
dont nous utilisons la structure de groupe de Lie. Un certain nombre de
questions, classiques lorsqu’il s’agit de la famille % de tous les réseaux de E,
se posent naturellement. La premiére est celle de la détermination des réseaux
extrémes pour .7, c’est-a-dire des réseaux de .7 sur lesquels l’invariant
d’Hermite atteint un maximum local parmi les réseaux de .7, et en particulier

N

la recherche des réseaux critiques pour .7, sur lesquels I’invariant d’Hermite
atteint son maximum absolu y (.7 ). L’existence de réseaux critiques n’est pas
¢vidente a priori, mais se démontre souvent facilement en utilisant le théoreme
de compacité de Mahler, ce qui justifie que I’on entreprenne le calcul
de y(.7) en déterminant tous les réseaux extrémes.

Il est utile de disposer d’une caractérisation commode des réseaux extrémes
pour .7, analogue a celle de Voronoi dans le cas classique, faisant intervenir
les notions de réseaux «parfaits» et «eutactiques». On est amené a consi-
dérer une notion plus restrictive que ’extrémalité, a savoir celle de réseaux
strictement extrémes pour .7 : il s’agit des réseaux L possédant un voisinage
dans .7 sur lequel ’invariant d’Hermite est strictement inférieur a celui
de L sauf lorsqu’il s’agit d’un réseau semblable a L. Cette propriété, qui est
vérifiée dans le cas classique ou I’on a .7 = %, n’est toutefois pas générale.
Nous avons rencontré des contre-exemples dans certaines familles de réseaux
isoduaux; un exemple est décrit a la fin du §4, dans lequel vy est constant
sur une variété de réseaux (modulo similitude) de dimension 2.

Les notions de perfection et d’eutaxie que nous utilisons sont relatives,
comme dans [B-M-S], a un sous-espace vectoriel 7 de I’espace Ends(FE)
des endomorphismes symétriques de E associ¢ de facon naturelle a la
famille .7.

On peut sans inconvénient faire la théorie dans le cas d’un groupe ¢
connexe. Pour une telle famille, ’espace 7 se définit par le procédé suivant.
Notons ‘u le transposé de u € GI(F). Comme ¢ est un sous-groupe de Lie
de GI1(E) (Bourbaki, Lie III. §8, th. 2), ’application u — ‘uu de ¥ dans
GI(E) a pour image une sous-variété X a la fois de GI(E) et de P’espace
vectoriel Ends(E) des endomorphismes symeétriques de E. L’espace tangent
a X en l’identité est le sous-espace vectoriel 7 de End*(E) cherché. Dans
les applications, ¢ est stable par transposition, et X est alors une sous-variété
du groupe ¢ lui-méme.

Des exemples sont examinés au §2, concernant notamment les G-réseaux
au sens de [B-M2] (exemple qui contient le cas usuel de tous les réseaux
de E), les réseaux dual-extrémes au sens de [B-M1], et les réseaux isoduaux
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(notion introduite par Conway et Sloane dans 1’appendice de [B-S], voir
aussi [C-S3]).

La caractérisation des réseaux strictement extrémes est I’objet des §§3 et 4.

Le §5 est consacré a une classification des réseaux de la famille . selon
la configuration de leurs vecteurs minimaux. On en déduit la finitude du
nombre de réseaux extrémes (modulo similitudes) dans le cas des G-réseaux
(résultat obtenu antérieurement par Jaquet dans [Ja]) et dans celui des
réseaux isoduaux.

Les réseaux isoduaux sont I’objet des §§6 a 8. On étudie plus particulie-
rement au §7 les notions de réseaux isoduaux symplectiques et orthogonaux
(la premiére notion est celle de [C-S2]), et I'on classe au §8 jusqu’a la
dimension 4 les réseaux symplectiques qui sont extrémes en tant que réseaux
isoduaux. La méthode utilisée repose sur ’introduction au § 6 de la notion plus
générale de réseau normal (cf. déf. 6.5).

Les auteurs remercient Christophe Bavard pour ses remarques.

2. EXEMPLES

Soit ¥ un sous-groupe fermé de GI(E) et soit L, un réseau de E. La
constante d’Hermite prend les mémes valeurs sur les images de L, par ¢
et par le groupe R* ¢ engendré par ¥ et les homothéties positives. Si ¥
contient les homothéties positives, soit "’ son sous-groupe formé des éléments
de déterminant + 1. Alors, on a ¥ = R* &, et ce produit est direct, si
bien que ¥ est connexe si et seulement si ¥ I’est. Pour I’étude de I’inva-
riant d’Hermite, il est indifférent de considérer ¥ ou ¥, et ce dernier choix
permet de se restreindre aux réseaux de déterminant 1.

L’une des formes du théoreme de compacité de Mahler est 1’assertion
suivante: une famille de réseaux de déterminants bornés et de normes minorées
par une constante strictement positive est d’adhérence compacte. Soit .# une
famille de réseaux de la forme ¥L, pour un groupe comme ci-dessus et
soit ¥ = sup, e+ Y(L). Soit L, une suite de réseaux de .# sur laquelle
Y(L,) tend vers y. Si & est de déterminant 1, le théoréme de compacité de
Mahler s’applique a la suite L,, dont on peut extraire une sous-suite
convergente dans .7, et le cas d’un groupe contenant les homothéties positives
se ramene au précédent. Si la famille .% est fermée dans #, ce qui est le cas
dans les exemples ci-dessous, puisque ¥ est fermé dans GI(E), la borne Y

est alors atteinte sur . et I’existence de réseaux critiques pour .7 est
assurée.
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