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where h e Fix(0) n hy """ Z(H). [

Similarly, one can read off formulae for X;(G) from Theorem 6.14
and the rational version from Theorem 6.16.

8. OUTER AUTOMORPHISMS OF GROUPS OF TYPE .¥

In this section we apply the preceding theory to prove the following
theorem which relates the algebraic topology of an automorphism 6: H — H

of a group H of type ¥ such that 6 has finite order in Out(H) to the fixed
group of 6.

THEOREM 8.1. Let H be a group of type ¥ which has the Weak
Bass Property over Q. Suppose that 0:H — H is an automorphism
whose order in Out(H) is r > 1. If the sum of the Lefschetz numbers
YI_oL(0%) is non-zero then Z(H) n Fix(0) = (1).

Before proving this we note that the quantity Ef;éL(G") appearing
above has the following interpretation:

PROPOSITION 8.2. Y/_,L(8') is r times the Euler characteristic
of the 6-invariant part of the homology of H, Ii.e.,

r—1
Y, L(®)=r Y (—1)/rankker(id — 0;: H;(H) - H;(H)) .
i=0 j=0
Proof. By elementary linear algebra, for any square complex matrix A4

with A7 = I we have trace(Y/_,A4') = rdimker(/ — A). The conclusion
easily follows. [

Proof of Theorem 8.1. Let G be the semidirect product G = H X¢ T
where T is infinite cyclic. By Lemma 8.7, below, G also has the WBP
over Q. Applying Theorem 7.11 to G, we have that y,(G; Q) # 0. By
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Theorem 5.4, Z(G) is infinite cyclic. By Corollary 7.9 there is an exact
P

sequence 1 = Z(H) n Fix(0) = Z(G) = gZ — 1 where the period of 6, g,

is positive. It follows that Z(H) n Fix(8) = (1). [

If y(H)+# 0 then Z(H) = (1) by Proposition 2.4 and consequently
Z(H) n Fix(8) = (1) in this case. If y(H) = L(8°) =0 then Y/_, L(8%)
= Y'Z!L(0%). These observations vyield the following corollaries of
Theorem 8.1:

COROLLARY 8.3. Let H be a group of type % which has the WBP
over Q. Suppose that 0:H — H is an automorphism of order 2 in
Out(H). If L(®)#0 then Z(H)n Fix(8) = (1). [

COROLLARY 8.4. Let H be a group of type & which has the WBP
over Q. Suppose Z(H) + (1), the automorphism 6:H — H has finite
order r in Out(H) and the restriction of 0 to Z(H) Iis the identity.
Then Y. _!L(8")=0.

i=1
Proof. Since the restriction of 6 to Z(H) is the identity, Z(H) N Fix(0)
=ZWH)+1). U

An automorphism which has finite order in Out(H) may have infinite
order in Aut(H). If 6 has finite order in Aut(H), the Weak Bass Property
hypothesis can be dispensed with in Theorem 8.1 and Corollary 8.3:

PROPOSITION 8.5. Let H be a group of type 7. Suppose that
0: H— H has finite order in Aut(H) and L(0©)+0. Then Z(H)
N Fix(0) = (1).

Proof. Let w € Z(H) n Fix(0). We use the terminology of [Br]. Let Z
be a finite K(H,1). Choose an essential fixed point, v, of f:Z—>Z
(inducing 0) as the basepoint of Z. There is a homotopy K: f = f such that
K (v, +) represents . The fixed point v is K-related to some fixed point u
of f [Br, p. 92]. Hence, for some s > 0, v is J-related to v, where J is
the s-fold concatenation K % --- % K. Then there exists ¢ € H such that
®*® = 60(c~1); compare [G]. As in the proof of Proposition 7.7, we get
o= J/2,0(c8(c"))=1,s00=1. [

Note that Y/Z{L(87) # 0 implies one of the L(8/)’s is non-zero. Since
Fix(0) C Fix(0%) for i > 0, we recover Theorem 8.1 (but without the Bass
Conjecture hypothesis) in the special case where 0 has finite order in Aut(H).
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The remainder of this section is devoted to the proof of Lemma 8.7 used
above.

LEMMA 8.6. Suppose that the group H has the WBP over Q.
Let T be an infinite cyclic group. Then the product group H X T also has
the WBP over Q.

Proof. Let G = H x T. Identify H with H x {1} C G. We use the nota-
tion of §5. By Schafer’s theorem [Sch, p. 224] applied to the normal subgroup
H C G, the image of Ty:Ko(QG)— HHy(QG) lies in HH,(QG)x.
Let p: G — H be the projection homomorphism. There is a commutative
diagram:

K,(QG) = HH,QG)y = Q
p*l p*l H

Ky(QH) = HH,QH) = Q

Write HHo(QG)y = HH,(QG)cy ® HHo(QG)y; where HH,(QG)y is
the direct sum of the HH,(QG)cy)’s over C(g) € c(H) — {C(1)}; also,
HH,(QH) = HHy(QH)cny @ HH,(QH)'. By hypothesis, H has the WBP
over Q, i.e. the composite

Ko(QH) = HH,(QH) » HHy(QH)' 5 Q

is zero. Since p*(HHo(QG)C(I)) CHHQ(QH)CU) and p*(HHo(QG)}_}
C HHy,(QH)’, the conclusion follows. [

LEMMA 8.7. Suppose that the group H has the WBP over Q and that
0: H—> H is an automorphism whose image in the group of outer
automorphisms of H has finite order. Then the semidirect product
H X3 T also has the WBP over Q.

Proof. Let G=H XqT=<(H,t|tht~'=0(h) for he H). Let n be
the order of 8§ in the group outer automorphisms of H. Then the subgroup
G’ of G generated by H and ¢” is isomorphic to H X T; furthermore, G’ is
normal and of finite index, n, in G. There is a “transfer” homomorphism
trans: HH,(QG) - HHy(QG") defined as follows. Given g € G, we can
write gt' = t°Wg;, for i =0,...,n — 1 where g; € G’ and ¢ is a permu-
tation of {0,...,n—1}. Let Fix(o) ={i|o(i) =i}. Then trans(C(g))
= Yicrix(e)C(&). Observe that if ge G" then Fix(c) ={0,...,n—1}
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because G’ is normal in G. In particular, g4 (trans(C(g))) = n if g € G'.
There is a commutative diagram:

KyQG) =3 HH,(QG)
res l trans l

T
Ko(QG") = HH:(QG")
where res: Ko(QG) » Ko(QG’) is obtained by regarding a projective
QG module as a projective QG’ module; see [Bass] for details concerning
the finite index transfer.

Recall that HH,(QG) = HH,(QG)y ® HH,(QG) where HH,(QG)
is the direct sum of the summands HH,(QG)c() corresponding to
the conjugacy classes not represented by elements of H. By Schafer’s
theorem [Sch, p. 224] applied to the normal subgroup H C G, the image
of Ty:Ko(QG)—~ HH,(QG) lies in HHy(QG)y. Thus we can replace
HH,(QG) with HH,(QG)y in the above diagram and obtain the com-
mutative diagram:

K,(QG) = HH,QG)y 3 Q
resl transl an

KoQG) = HH,QG) 2 Q
(the right square commutes because H C G’ and because of the obser-
vation made above). Write HHy(QG)y = HHy(QG)cy ® HH,(QG) 4
where HH,(QG)y is the direct sum of the HH (QG)cy)’s over
C(g) € c(H) — {C(1)}; also, HHy(QG') = HHy(QG")c1y ® HH(QG')".
Then trans(HHo(QG)ca)) C HHy(QG')cuy and trans(HH,(QG)y
C HH,(QG’)'. By Lemma 8.6, G’ has the WBP over Q, i.e. the composite

T €y
Ky,(QG") = HH,(QG") = HH,(QG')' = Q is zero. The conclusion follows
from the above diagram. [

9. TRACE FORMULAE FOR HOMOLOGICAL INTERSECTIONS

The goal of this section is to prove a ‘“trace formula” (Theorem 9.13) for
the homological intersection of the graph of a map F: M X Y = M with the
graph of the projection map p: M X Y = M where Y is a closed oriented
manifold and M is a compact oriented manifold. This result will be
applied in §10 to complete the proof of Theorem 1.1.
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