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L'Enseignement Mathématique, t. 41 (1995), p. 335-365

DENSITÉ DANS DES FAMILLES DE RÉSEAUX.

APPLICATION AUX RÉSEAUX ISODUAUX

par Anne-Marie Bergé et Jacques Martinet1

Résumé. On s'intéresse dans cet article à la densité des empilements de sphères
associés à des familles de réseaux qui se déduisent de l'un d'entre eux par l'action d'un
sous-groupe fermé du groupe linéaire. La théorie des groupes de Lie permet de donner
une caractérisation à la Voronoï des maxima locaux de densité, recouvrant de très
nombreuses situations étudiées auparavant. On applique ensuite ces méthodes à l'étude
des réseaux isoduaux récemment définis par Conway et Sloane.

Abstract. We study in this paper the density of sphere packings arising from
families of lattices which consist in the orbit of one of them under the action of a closed
subgroup of the linear group. The theory of Lie groups yields a characterization "à la
Voronoï" of the local maxima of density which contains many previously known
examples. These methods are then applied to isodual lattices, recently defined
by Conway and Sloane.

1. Introduction

Soit E un espace euclidien de dimension n, et soit & l'espace des réseaux
de E, muni de la topologie pour laquelle un système fondamental de

voisinages d'un réseau L s'obtient en associant à tout voisinage X" de

Id dans GiCE) l'ensemble des réseaux u{L), u e X". Pour x e E, la norme
de x est N(x) x.x (le carré de la norme euclidienne). A toute base
44 (<?i, e2, en) de E, on associe sa matrice de Gram Gram(^)

((<?/. ej)). L'invariant d'Hermite d'un réseau L est y(L) N(L) det(L) -1/n,
où N(L) ~ infjfg/^^oN(x) est la norme ou minimum de L et det(L) est
le déterminant de L (déterminant de la matrice de Gram d'une base de L);
y (L) ne dépend que de la classe de similitude de L, et yn/2(L) est
proportionnel à la densité de l'empilement de sphères associé à L\
yn supi e £ y (L) est la constante d'Hermite pour la dimension n.

1 Membres du laboratoire U.M.R. 9936 du C.N.R.S.
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Nous étudions ici la densité dans des familles éX de réseaux qui sont des

orbites sous l'action d'un sous-groupe fermé du groupe linéaire Gl^),
dont nous utilisons la structure de groupe de Lie. Un certain nombre de

questions, classiques lorsqu'il s'agit de la famille Xi de tous les réseaux de E,
se posent naturellement. La première est celle de la détermination des réseaux

extrêmes pour 5% c'est-à-dire des réseaux de ^ sur lesquels l'invariant
d'Hermite atteint un maximum local parmi les réseaux de et en particulier
la recherche des réseaux critiques pour Jù sur lesquels l'invariant d'Hermite
atteint son maximum absolu L'existence de réseaux critiques n'est pas
évidente a priori3 mais se démontre souvent facilement en utilisant le théorème
de compacité de Mahler, ce qui justifie que l'on entreprenne le calcul
de y en déterminant tous les réseaux extrêmes.

Il est utile de disposer d'une caractérisation commode des réseaux extrêmes

pour JC analogue à celle de Voronoï dans le cas classique, faisant intervenir
les notions de réseaux «parfaits» et «eutactiques». On est amené à considérer

une notion plus restrictive que Pextrémalité, à savoir celle de réseaux

strictement extrêmes pour Xr : il s'agit des réseaux L possédant un voisinage
dans sur lequel l'invariant d'Hermite est strictement inférieur à celui
de L sauf lorsqu'il s'agit d'un réseau semblable à L. Cette propriété, qui est

vérifiée dans le cas classique où l'on a -f Xi, n'est toutefois pas générale.

Nous avons rencontré des contre-exemples dans certaines familles de réseaux

isoduaux; un exemple est décrit à la fin du §4, dans lequel y est constant

sur une variété de réseaux (modulo similitude) de dimension 2.

Les notions de perfection et d'eutaxie que nous utilisons sont relatives,

comme dans [B-M-S], à un sous-espace vectoriel W de l'espace Endv(£)
des endomorphismes symétriques de E associé de façon naturelle à la

famille JC

On peut sans inconvénient faire la théorie dans le cas d'un groupe 3T

connexe. Pour une telle famille, l'espace W se définit par le procédé suivant.

Notons lu le transposé de we Gl (is). Comme ^ est un sous-groupe de Lie
de Gl(2i) (Bourbaki, Lie III. §8, th. 2), l'application u^luu de X dans

Gl(ii) a pour image une sous-variété X à la fois de Gl(Zs) et de l'espace

vectoriel End5(ii) des endomorphismes symétriques de E. L'espace tangent
à X en l'identité est le sous-espace vectoriel W de End5(£) cherché. Dans

les applications, X est stable par transposition, et X est alors une sous-variété

du groupe X lui-même.
Des exemples sont examinés au §2, concernant notamment les G-réseaux

au sens de [B-M2] (exemple qui contient le cas usuel de tous les réseaux

de E), les réseaux dual-extrêmes au sens de [B-Ml], et les réseaux isoduaux
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(notion introduite par Conway et Sloane dans l'appendice de [B-S], voir

aussi [C-S3]).
La caractérisation des réseaux strictement extrêmes est l'objet des §§3 et 4.

Le § 5 est consacré à une classification des réseaux de la famille selon

la configuration de leurs vecteurs minimaux. On en déduit la finitude du

nombre de réseaux extrêmes (modulo similitudes) dans le cas des G-réseaux

(résultat obtenu antérieurement par Jaquet dans [Ja]) et dans celui des

réseaux isoduaux.
Les réseaux isoduaux sont l'objet des §§6 à 8. On étudie plus particulièrement

au §7 les notions de réseaux isoduaux symplectiques et orthogonaux
(la première notion est celle de [C-S2]), et l'on classe au §8 jusqu'à la

dimension 4 les réseaux symplectiques qui sont extrêmes en tant que réseaux

isoduaux. La méthode utilisée repose sur l'introduction au §6 de la notion plus

générale de réseau normal (cf. déf. 6.5).
Les auteurs remercient Christophe Bavard pour ses remarques.

2. Exemples

Soit f un sous-groupe fermé de Gl(is) et soit L0 un réseau de E. La
constante d'Hermite prend les mêmes valeurs sur les images de L0 par 3f

et par le groupe R*3f engendré par 3F et les homothéties positives. Si 3f

contient les homothéties positives, soit 3F' son sous-groupe formé des éléments
de déterminant ± 1. Alors, on a R* 3F', et ce produit est direct, si

bien que W est connexe si et seulement si 3F' l'est. Pour l'étude de l'invariant

d'Hermite, il est indifférent de considérer 3F ou 3F', et ce dernier choix

permet de se restreindre aux réseaux de déterminant 1.

L'une des formes du théorème de compacité de Mahler est l'assertion
suivante: une famille de réseaux de déterminants bornés et de normes minorées

par une constante strictement positive est d'adhérence compacte. Soit une
famille de réseaux de la forme 3FL0 pour un groupe comme ci-dessus et
soit y sup i 6 .y y (L). Soit Lp une suite de réseaux de sur laquelle
y(Lp) tend vers y. Si 3f est de déterminant 1, le théorème de compacité de

Mahler s'applique à la suite Lp, dont on peut extraire une sous-suite
convergente dans et le cas d'un groupe contenant les homothéties positives
se ramène au précédent. Si la famille est fermée dans #, ce qui est le cas
dans les exemples ci-dessous, puisque 3f est fermé dans GUE1), la borne y
est alors atteinte sur FF et l'existence de réseaux critiques pour est
assurée.
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Dans de nombreux exemples, le groupe est l'ensemble des éléments u
d'une sous-algèbre A de End(£) munie d'une involution i d'une algèbre

d'endomorphismes qui vérifient l'égalité uux 1. Dans ce cas, l'espace

tangent en l'élément neutre du groupe ^ est donné par la formule

^(f) {oeA\üx= - v}

(Bourbaki, Lie III, p. 145, prop. 37). La détermination de l'espace W se

fait ensuite en observant que W est l'image de par l'application
V h* lv + Ü.

2.1. Exemple. L'espace des réseaux de E. Ici, la famille
est l'ensemble ^ de tous les réseaux de E. On prend ^ Gl + (£) et

W — End^E). Voronoï a montré que les réseaux extrêmes sont les réseaux

parfaits et eutactiques, qu'ils sont strictement extrêmes, et que le nombre
de classes de similitude de réseaux parfaits est fini. De plus, Korkine et

Zolotareff ([K-Z]) ont montré que les réseaux parfaits sont rationnels (i.e.
proportionnels à des réseaux entiers). Les questions soulevées dans l'introduction
sont donc toutes résolues dans ce cas. En outre, Voronoï a donné un algorithme
permettant de trouver tous les réseaux parfaits à partir de l'un d'entre eux.

2.2. Exemple. L'espace des G-réseaux. On se donne un sous-

groupe fini G du groupe orthogonal 0(£), et l'on considère la famille
des réseaux stables par G. On peut prendre pour W le commutant de G

dans G ICE1) (ou sa composante connexe neutre). L'espace W est le commutant
de G dans Enduis). La caractérisation des réseaux «G-extrêmes» comme
réseaux ^-parfaits et ^-eutactiques est démontrée dans [B-M2] (th. 2.10),
mais la démonstration de la finitude des classes de similitude de réseaux

G-parfaits (prop. 3.12) est incorrecte. [Il n'est pas prouvé que les changements
de bases utilisés dans la démonstration de 3.12 puissent se faire par
des éléments de ^.] Une démonstration correcte vient d'être obtenue par
Jaquet ([Ja]). Une autre démonstration en est proposée à la fin du §6. Un

«algorithme de Voronoï» est exposé dans [B-M-S]. Les composantes connexes
du graphe de Voronoï sont en bijection avec les classes de représentations

intégrales de G ([B-M-S], th. 2.9).

2.3. Exemple. Les réseaux dual-extrêmes. Il s'agit d'une notion
introduite dans [B-Ml]. On définit un «invariant d'Hermite dual» y' par
y'(L) (N(L)N(L*)) l/2(L* {x e E | Vy e E,x.y e Z} est le réseau dual
de L). On a la relation de moyenne y'{L) (y(L)y(L*)) 1/2 et l'égalité y'(L)
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y'(L*). On dit qu'un réseau est dual-extrême s'il réalise un maximum

local de y'. Considérons alors dans l'espace ExE de dimension 2n la

famille des sommes orthogonales L ± L* dans lesquelles L parcourt

l'ensemble 'M de tous les réseaux de E. Soit ^ le sous-groupe de Gl (E x E)
formé des couples {u, tu~!), u e Gl + (i?). Les réseaux de la forme L _L L*
constituent une unique orbite sous l'action de On a det(X_l_L*) 1

et donc y (L L L*) - min [TV(L), TV(L*)].
Supposons que l'on ait N(L) =£ N(L*), par exemple N(L) < N(L*) pour

fixer les idées, et considérons les homothéties de rapport X croissant de 1

à (N(L)/N(L*))1/2. Ces homothéties font croître strictement l'invariant
d'Hermite. Donc, les maxima locaux de y (L±L*) sont atteints sur le

fermé d'équation N(L) N(L*). Mais, sur cet ensemble, on a l'égalité

y '(L) y {L J_ L*). Les maxima locaux de l'invariant y' sur les réseaux

de E s'interprètent donc comme maxima locaux de l'invariant y sur une sous-

famille de réseaux de E x E.

L'espace W est le sous-ensemble de EndS{E) x EndS(E) formé des

couples (u, - u). On vérifie facilement que les notions de dual-perfection
et de dual-eutaxie ([B-Ml], déf. 3.10, p. 24) coïncident avec celles de

^-perfection et de §?-eutaxie. La finitude de l'ensemble des classes de

similitude de réseaux dual-extrêmes vient d'être démontrée par le premier
auteur ([Ber]). La dual-perfection n'assure pas cette finitude (il existe des

familles à 1 paramètre de réseaux dual-parfaits). On remédie à cet inconvénient
en élargissant cette famille par homothétie, ce qui revient à remplacer W par

RId.
On ne connaît pas d'adaptation de l'algorithme de Voronoï à cette

situation.

2.4. Exemple. Les réseaux isoduaux. Certains réseaux célèbres

(v42,D4, ESi réseaux de Coxeter-Todd, de Barnes-Wall, de Leech, diverses
variantes du réseau de Quebbemann) sont semblables à leur dual, ce qui
entraîne que les invariants y et y' prennent la même valeur sur ces réseaux.
La normalisation N(L) N(L*) déjà utilisée dans l'exemple 2.3 permet de se

restreindre au cas des réseaux isométriques à leur dual; ce sont les réseaux
isoduaux, notion introduite par Conway et Sloane dans [C-S2]. Nous devons
préciser cette définition: étant donné un élément g e 0(E), on dit qu'un
réseau L est o-isodual si l'on a L* o(L), cf. §§6-8. Alors, l'ensemble
des réseaux G-isoduaux (s'il n'est pas vide) constitue une orbite sous l'action
d'un sous-groupe de Lie de Gl {E).
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3. Perfection et eutaxie

Le but de ce § est d'étendre au sous-espace © les notions classiques de

Voronoï, qui correspondent au cas où W est l'espace End^(£) tout entier.
Pour tout x e E, on note (px la forme linéaire sur End5(£) définie par

q>x(u) u(x).x

3.1. Définitions. Soit © un sous-espace vectoriel de End*(Zi) et

soit S un ensemble fini de vecteurs non nuls de E.

(1) S est © -parfait si les restrictions à © des formes linéaires (p X,x e S,

engendrent le dual ©* de ©, i.e. s'il n'existe pas dans © d'endo-
morphisme u non nul tel que q>x(u) 0 pour tout x e S;

(2) S est ©-eutactique si la restriction à © de la forme linéaire trace
(notée Tr) est combinaison linéaire à coefficients strictement positifs
des restrictions à © des (px,re5.

On emploie la même terminologie pour un réseau en prenant pour ensemble

S l'ensemble de ses vecteurs minimaux.
On remarque que, si S est parfait ou eutactique pour ©, il l'est

également pour tout sous-espace vectoriel ©' de ©.
De même, il est clair que tout ensemble fini de vecteurs de E contenant

un ensemble ©-parfait est ©"-parfait.
On peut montrer que la propriété «©-eutactique et ©-parfait» se

transmet également; cela résulte par exemple de la caractérisation suivante:

3.2. Proposition. Soit © un sous-espace vectoriel de E, et soit S

un ensemble fini de vecteurs non nuls de E. Alors, les conditions suivantes

sont équivalentes:

(1) S est à la fois ©-parfait et ©-eutactique,

(2) v 0 est l'unique solution dans © du système d'inéquations
linéaires

tyx(v) ^ 0 pour tout x e S et Tr(t>) ^ 0

Démonstration. Supposons d'abord que S vérifie (1) et soit y e © tel que

(px(u) ^ 0 pour tout x e S et Tr(i>) ^ 0

Dans la relation de ©-eutaxie appliquée à u

Tr(t0 X PxQx(v), 0 pour tout x
X e S



DENSITÉ DANS UNE FAMILLE DE RÉSEAUX 341

le premier membre est donc ^ 0 et le second ^ 0, ils sont donc nuls, et

puisque tous les px(Px(^) sont positifs ou nuls et les px positifs strictement,

on obtient <px(v) 0 pour tout x e S, donc u 0 puisque S est ^-parfait.
La condition (2) est donc vérifiée.

Réciproquement, supposons (2) vérifiée, et montrons que S est ^-parfait.
Soit donc u e W tel que (p*(u) 0 pour tout x e S; comme - u vérifie cette

même hypothèse, on peut, quitte à changer u en - u, supposer Tr(y) ^ 0.

Par (2), u est donc nul.
Pour montrer la ^-eutaxie, ce qui achèvera la preuve de la proposition,

on utilise le théorème de programmation linéaire dû à Stiemke et exhumé

par Barnes ([St]):

3.3. Théorème (Stiemke). Soit V un espace vectoriel réel de
dimenson finie, et soient F} ,F2, • • •, Fm des formes linéaires sur V.

Les propriétés suivantes sont équivalentes :

(a) Toute solution u e V du système d'inéquations

Fi{v) ^ 0, / «= 1, 2, • • • m

est solution du système d'équations

Ffu) 0, i 1, 2, m

(b) Il existe des nombres réels pi, p2, • • •, pm strictement positifs tels
que pjFj + p 2F2 + • • • + p mFm 0.

Appliquons ce résultat à V W, et aux restrictions à W des formes - Tr
et cpX,x e S. La condition (b) ci-dessus est exactement la ^-eutaxie de S;
quant à (a), elle est certainement vérifiée, puisque (2) dit que toute solution
u e V du système d'inéquations est nulle.

Dans le cas où S contient l'identité Id, on peut le remplacer par l'hyper-
plan g'oC g", orthogonal à l'identité pour le produit scalaire <u,i/>

Tr(üü'),

{v e &\Tr(u) 0}

3.4. Proposition. Soit tt un sous-espace de End5(if) contenant
l'identité, soit Ff l'hyperplan de W formé des endomorphismes de trace
nulle, et soit S {xi, • • % un ensemble fini de vecteurs unitaires
de E. On note cp' la restriction à W de la forme linéaire q>x., et cp ^

sa restriction à Lc0. Alors:
(1) F -eutaxie et W^-eutaxie sont équivalentes.
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(2) Pour que S soit -parfait, il faut et il suffit qu'il soit W parfait
et que les restrictions cp q à &0 vérifient une relation

X <X/(Po 0, avec £ az * 0
i < / ^ ^ /

(3) S est W-parfait et W-eutactique si et seulement s'il est W^-parfait
et Wo-eutactique.

Démonstration. (1) Supposons que S vérifie une relation E/P/^o 0,

pz > 0, de ^o-eutaxie. Alors il vérifie la relation de ^-eutaxie E-T^qLu i LPi^
Tr. En effet, soit v e W et soit u0 v - \ Tr(i>)Id sa projection

orthogonale sur ÏÏq. On a EzP/<P'Oo) 0, c'est-à-dire

EZP/(P7» ~r Tr^jp^Id) ^Tr(u)
La réciproque est triviale.

(2) Si S est -parfait, il est trivialement -parfait; de plus, la
restriction Tr à & de la forme trace s'écrit sur les qL (qui par hypothèse
engendrent §?*):Tr= E/OLCp7, relation qui, appliquée à Id, donne

n EZ(XZ, et, par restriction à §?0, 0 Eza/(po.
Réciproquement, supposons qu'il existe une relation Ei ^a/(Po & 0,

avec Ezot/ ± 0; soit v u0 + ^ Tr(y)Id, u0 e un élément de W tel

que (p ' (6>) 0 pour tout i. On a donc (p o (^o) + \ Tr(i>) 0 pour tout /,

d'où l'on déduit E
z

cx£-(Po (»o) + Tt(u) 0, où E /«/<Po (^o) 0 et

E,az 0. Donc Tr(u) 0, et u v0 appartient à &0. Si S est -parfait,
on déduit alors de la relation (P' (e) 0 pour tout i que u est nul. Ainsi, S est

§?-parfait.

(3) se déduit immédiatement de (1) et (2), puisque toute relation de

^o-eutaxie E / P/ T> o 0, P/ > 0 est telle que E P/ ^ 0.

Au produit scalaire (u,w) Tr(uw) dans l'espace End*(i?) est associée

une identification de End^i?) à son dual, transformant u e Ends(E) en

cp : w < v, w >. Cette dualité associe à l'application identique la forme linéaire

trace, et, pour x 0 e E, à la projection orthogonale px de E sur Rx la
forme linéaire (px.

La dualité du sous-espace vectoriel W sur son dual S?* induite par
l'identification précédente est

proj $(u) ++ restr^(cp)

où proj^ et restr^ désignent respectivement la projection orthogonale sur W

et la restriction à §?, comme on le voit en remarquant que, pour w e 5?,

(p(w) <u, w> <proj^(ü), w>.



DENSITÉ DANS UNE FAMILLE DE RÉSEAUX 343

C'est ainsi que l'ensemble fini S est ^-parfait (resp. §?-eutactique) si et

seulement si les proj^ (/?*), x e S, engendrent §? (resp. s'il existe des

coefficients p^tous strictement positifs tels que projg^(Id) ExP*proj wiPx))-

4. Extrémalité dans

Pour faire une étude locale de la fonction d'Hermite dans la famille JS
on établit quelques résultats préliminaires relatifs à l'espace End5(E) des

endomorphismes symétriques de E, dont on note || || une norme.
On rappelle que l'on note exp l'application exponentielle de End(E) dans

G1(E); par restriction, elle induit un difféomorphisme de End5(E) sur
l'ensemble des automorphismes symétriques positifs de E.

Les deux énoncés suivants concernent le déterminant et la norme d'un
réseau. Le premier, qui se démontre par un calcul de valeurs propres, est

bien connu:

4.1. Lemme. Pour tout v g Enduis), on a det(expi>) eTv{u).

4.2. Lemme.

(i) Soit u e GUE1) et soit xeE. On a N(u(x)) N(x) + (px({uu - Id).

(ii) Pour tout v g End*(E), pour tout x e E, on a cpx(exp(i;) - Id)
^ (px(^), l'égalité ayant lieu si et seulement si u(x) « 0 (et alors les

deux membres sont nuls).

(iii) Soit S un ensemble fini de vecteurs non nuls de E et soit F
un cône fermé de End5(E) tel que, pour tout v ^ 0 appartenant
à E, le minimum minxe5(px(^) soit négatif Alors, il existe
a > 0 tel que, pour tout v e F avec 0 < || v || < a, on ait
minX6 5 cpx(exp(k>) - Id) < 0.

(iv) Soit L un réseau et soit S l'ensemble de ses vecteurs mini¬
maux. Pour u g G1(E) assez voisin de l'identité, on a N(u(L))

N(L) + minxeS(?x(tuu - Id).

Démonstration, (i) On a

u(x). u(x) - x.x luu(x). x - x .x ^uu - Id) (x) .x (p x(fuu - Id)

On prouve (ii) et (iii) par un argument de convexité. On note E la sphère
unité de End5(E). Pour tout w g E, pour tout x g E, on remarque que la
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fonction numérique fw:t ^ fw(t) cpx(exp(/w) - Id) est convexe, et que

fw(0) 0, /;(0) (p*(w).
En effet, en notant E,- les valeurs propres de w et (s,) une base orthonormale

de F formée de vecteurs propres de w, on a, en posant x
/„(/) 1), d'où les dérivées A(0 I et /;'(?)

£ °k]e"'' ^ 0, avec égalité si et seulement si w(x) 0.

V

(ii) Soient x e E et u =£ 0. On pose ü t et w - e E. La convexité
*

t
de la fonction fw précédente montre que cp^expu - Id) cpx(exp(z'iv) - Id)

^ ttyx(w) (pjc(tO, l'égalité exigeant w(x) u(x) — 0.

(iii) Soit w e E n E. Par hypothèse, il existe x e S tel que (px(w) soit

<0. La convexité de la fonction fw correspondante montre qu'il existe

tw> 0 tel que fw(t) soit négative pour tout t e]0, tw[. Il en est donc de

même de Mw(t) minx(cpx(exp(^w) - Id)), et, plus précisément, si Mw est

négative en un point t0, elle l'est sur tout l'intervalle ]0, £0[.

La fonction w' Mw> (tw) étant continue sur F n E, il existe un voisinage

ouvert V(w) de w dans FnE tel que, pour w' e V(w), Mw> soit

négatif en tWi et donc aussi sur l'intervalle ]0, tw]. Du recouvrement

UweFniEO) du compact F n Z, on extrait un recouvrement fini
L(w/), et l'on pose a min(/Wl--- tWr). Soit alors u e F tel que

0 < Il i#]| < a et soit w jpj v e E. Il existe /, 1 ^ i ^ r, tel que w appartienne

à V(Wi) et donc Mw{t) est < 0 sur l'intervalle ]0, a[C]0, tWj\.

(iv) Pour u suffisamment voisin de Id (modulo le groupe orthogonal), les

vecteurs minimaux du réseau u (L) proviennent de vecteurs minimaux de S, de

sorte que N(u(L)) minX6 sN(u(x)), d'où le résultat grâce à (i).

4.3. Lemme. Soit L un réseau, et soit u e Gl (F) tel que u{L)
soit semblable à L. Alors, si u est assez voisin de l'identité, u lui-même

est une similitude.

Démonstration. Le rapport de similitude Xu des deux réseaux est tel que
ddeUL)^ (detw)2, et tend donc vers 1 quand u tend vers l'identité.

Quitte à remplacer u par on peut donc supposer les réseaux

isométriques. Il existe alors une isométrie / avec (fu)(L) L. Donc, fu
appartient au sous-groupe discret G1(F) de Gl (F), et *uu {(fu) (fu)
appartient à l'ensemble discret des tuu, u e Gl (F). Pour u assez voisin de

l'identité, on a donc luu Id, ce qui signifie que u est une isométrie.
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Soit ÜF une famille de réseaux vérifiant les hypothèses et notations de

l'introduction: il existe un sous-groupe fermé ^ de Gl(ii) tel que les composantes

connexes de F sont des orbites de la composante connexe neutre
de On suppose que ^ est stable par transposition. L'espace tangent en

l'identité à la variété des tuu, u e est noté W. On suppose de plus que la

famille F est stable par homothéties, ou bien constituée de réseaux de même

déterminant.
La proposition suivante permet si besoin est de ne considérer que des

automorphismes symétriques de

4.4. Proposition. Soit ue et soient f et s ses composantes
orthogonale et symétrique. (On a u fs et s est défini positif.) Alors,

f et s appartiennent aussi à <f?°.

Démonstration. Comme tuu est défini positif, il existe u e Ends(E)
tel que {uu exp v. Comme ^ est stable par transposition, v est dans

l'espace tangent à (et en fait dans W). Alors, t exp f est un endo-
morphisme symétrique positif appartenant à ^f°, et l'on a t2 ruu, donc
t — s. Ainsi, s, et par suite /, sont dans °.

Nous sommes maintenant en mesure de démontrer un théorème à la
Voronoï.

On rappelle qu'un réseau L e F est dit strictement extrême s'il existe un
voisinage y// de L dans dans lequel tout réseau L ' non semblable à L vérifie
l'inégalité stricte y (Z/) < y (L).

4.5. Théorème. Soient F, ^ et W comme ci-dessus. Soit L un
réseau appartenant à F et soit S l'ensemble de ses vecteurs minimaux.
Alors:

(i) L est strictement extrême dans F si et seulement s'il est W-parfait
et W-eutactique.

(ii) Si L est extrême mais non strictement extrême, il existe dans F un
arc d'origine L, formé de réseaux extrêmes deux à deux non
semblables, de même invariant d'Hermite que L et qui, à l'exception
de L, ont tous même ensemble de vecteurs minimaux engendrant un
sous-espace strict de E.

Demonstration. Pour étudier l'invariant d'Hermite au voisinage de L,
on peut remplacer par la famille normalisée F0 {L' e Jr|det(L')

det(L)}, et donc, d'après 4.1, l'espace par &0 {u e W \ Tr(p) 0}.
L'invariant d'Hermite est alors proportionnel à la norme des réseaux.
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Supposons d'abord que S soit §?-parfait et ^-eutactique. D'après le

critère 3.2., on a donc, pour tout élément v & 0 de minxes<Px(v) < 0

(puisque Tr(u) 0). D'après le lemme 4.2, (iii) (appliqué à S et au cône

F §?o), il existe a > 0 tel que, pour u e avec 0 < || v || < a, on
ait minX6iS(px(exp(^) - Id) < 0. De même, il existe ß>0 tel que,

pour II uII < ß, A/((exp(jü) (L))- N(L)minxeS(px (exp(ju) - Id) (4.2, (iv)).

Soit s min (a, ß). Pour tout réseau L' appartenant au voisinage
|exp(|i>) (L), u e 0 < j|.y |) < s} de L dans J^o, on a N{L')

-N(L)<0, i.e. y(L')<y{L)\ dans y {L) est un maximum strict:
L est strictement extrême.

Supposons inversement que f e .f réalise un maximum de la fonction
d'Hermite dans un voisinage % de L dans que l'on suppose assez petit

pour que les vecteurs minimaux des réseaux qu'il contient proviennent de ceux
de L, et soit u e 5>0 tel que

(4.6) min ((px(ü)) ^ 0
X e S

Pour t > 0, on considère

(4.7) ut exp 6>j e et Lt ut(L) e

On suppose t assez petit pour que Lt appartienne à et pour que ut vérifie
la condition du lemme 4.3. Puisque Tr(^) 0, on a det ut 1 (cf. 4.1), et

donc det (Lt) det (L), et pour t assez petit (lemme 4.2, (iv) et (iii)), la
condition (4.6) entraîne

det (L)%/n (y(Lt) — y (L)) N(Lt) - N(L)
min (cpx(exp(^) - Id)) ^ tminq*x(v) ^ 0
x e S x e S

Le caractère maximal de y (L) dans % implique que les inégalités ci-dessus sont
des égalités, et donc que y{Lt) y (L). De plus, les vecteurs minimaux de Lt
sont les vecteurs ut(x), avec x e S tel que (p* (exp(^) - Id)) tq>x(u) 0,

c'est-à-dire, d'après 4.2, (ii), u(x) 0 donc ut(x) x. On a donc

(4.8) S(Lt) S n Ker(^)

Si l'on suppose y (L) strictement maximal dans la relation

y(Lt) y (L) exige que Lt soit semblable à L, et donc (lemme 4.3) que ut soit

une isométrie (rappelons que det(w,) 1), c'est-à-dire que v soit nul. Ainsi,
sous cette hypothèse, la condition (4.6) implique v 0: L est alors
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-parfait et ^fl-eutactique, ce qui achève de prouver (i), compte tenu

de 3.4.

Sinon, d'après l'étude de la partie directe, S n'est pas à la fois -parfait

et gVeutactique, et il existe bien dans §?0 an élément v 0 vérifiant les

conditions (4.6). Les réseaux Lt construits à partir de v sont alors deux à deux

non semblables, et vérifient les propriétés énoncées dans (ii). D

4.9. Corollaire. Si un réseau L est strictement extrême pour un

groupe "C, le nombre s de couples ±x de ses vecteurs minimaux

vérifie

s ^ dim (S7)

et même, dans le cas où est formé d'éléments de déterminant ± 1,

5 ^ dim (SO + 1

Démonstration. La ^-perfection de l'ensemble S des vecteurs minimaux

implique 5 ^ dim (S?) - dim(^); si de plus ^ est formé d'éléments de

déterminant ±1, W est contenu dans le noyau de la trace, de sorte que
la relation de §?-eutaxie se traduit par une relation non triviale entre les

(px, x g S(L), et l'on a donc s ^ dim(<(px, a e S(L))) + 1.

[Remarquons que dans ce cas, L est aussi strictement extrême pour le

groupe R * ^ de dimension dim (SO +1.]
Sans hypothèse particulière sur il peut exister des réseaux extrêmes

qui ne le sont pas strictement. L'exemple suivant correspond à la famille
isoduale réductible de dimension 3 considérée dans [C-S3].

Soit o une rotation de R3 d'angle n/2 et d'axe une droite D dont on
note P le plan orthogonal, et soit L un réseau o- isodual. Il est en particulier

stable par o2, ce qui entraîne que L contient avec l'indice 1 ou 2 la
somme orthogonale L n D X L n P. On constate que l'indice 2 est impossible
pour les réseaux o-isoduaux, et que l'on a L n D — Z (et det(L n P) 1).
On a donc y (L) N(L) ^1, et les réseaux o-extrêmes sont ceux pour
lesquels L n P est de norme ^ 1. Ils constituent modulo isométries une
variété à bord de dimension 2. Aucun d'entre eux n'est strictement extrême,
et leurs vecteurs minimaux peuvent se limiter à ceux de D.
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5. Résultats de classification

On conserve les notations et hypothèses des paragraphes précédents. On

suppose en outre que ^ est connexe.
On classe ci-dessous les réseaux selon la configuration de leurs vecteurs

minimaux, généralisant des notions introduites dans [Ber] et [B-M3] (et

auparavant de façon informelle dans [B-Ml], §5).

5.1. Définition. Soient L et L' deux réseaux appartenant à la famille
JS et S et S' leurs ensembles de vecteurs minimaux. On définit les relations
suivantes :

L' L s'il existe u e tel que L' u(L) et S' u(S),
L' < L s'il existe u e & tel que L' u{L) et S' C u(S).

La relation est une relation d'équivalence dans y, et la relation
induit un ordre (encore noté < sur l'ensemble des classes de -équivalence.

Le théorème suivant montre en particulier que les classes au sens de la

déf. 5.1 contiennent au plus un réseau strictement S?-extrême.

5.2. Théorème. Soit c£ une classe et soit L e un réseau

ïï?-eutactique.

(1) L'invariant d'Hermite atteint sur L son minimum dans la

réunion c£ des classes < fï.

(2) Si S(L) engendre E, ou si L est &-parfait, alors les réseaux

eutactiques de sont tous semblables à L.

[Si le nombre de classes est fini (comme c'est le cas dans les exemples

du §2), on obtient la finitude des réseaux strictement extrêmes pour le

groupe et même des réseaux §?-eutactiques possédant n vecteurs minimaux

indépendants.]

Démonstration On se ramène tout de suite au cas où ^ est de

déterminant 1. Soit L' u(L) e jr» u eun réseau tel que S' J u(S). On a

donc N(u(x)) N{L') pour tout x e S, c'est-à-dire (lemme 4.2,(i))

(pxVuu - Id) N(L') - N(L) pour tout x e S

De plus, comme Sf est connexe, il existe u e W (de trace évidemment

nulle) tel que luu exp(L>). On a donc

(5.3) (px(exp(i>) - Id) N(L') - N(L) pour tout x e S
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Posons, pour tout x e S,

VxO) (pA-(expO) - Id) - (px0)

D'après le lemme 4.2, (ii), on a l'inégalité \f/A-(^) ^ 0, avec égalité si et

seulement si v(x) 0. Par 5.3, on a

(5.4) 7V(Z/) - N(L) <px(u) + \|Jx(u) pour tout x e S

Puisque S est S^-eutactique, il existe des coefficients px > 0 tels que

Exms Px<Px(v) Tr(v) 0, d'où l'on tire, par combinaison linéaire des

relations 5.4:

(5.5) f S pà (N(L') -N(L)) 0 + F
\x e S J x e S

et donc N(L') - N(L) ^ 0, d'où y(L') ^ y (L), ce qui prouve (1).

Pour prouver (2), on suppose de plus que L' est ^F-eutactique et dans la

classe cd (i.e., on a S(Lf) u(S)). En échangeant les rôles de L' et de L,
on voit que l'on a N(L') - N(L) 0 (i.e., y (Z/) y (L)), et donc (par 5.5)

\jjx(u) 0 c'est-à-dire u(x) 0 pour tout x e S. Donc, S est inclus dans

Ker v. Cela entraîne que v est nul: c'est clair si S engendre E, et, si L' est

^ -parfait, cela résulte des égalités cp^ (l>) 0 pour tout x e S. On en déduit

que l'on a {uu Id, donc que u est une isométrie.

5.6. Corollaire. Un réseau strictement W-extrême est isolé (modulo
similitude) dans sa classe vf; en particulier, lorsqu'il s'agit d'un maximum
absolu (strict), ce réseau est unique modulo similitude dans la réunion
W des classes qui contiennent CS.

En effet, il réalise à la fois par définition même un maximum relatif
(ou absolu) de y dans donc aussi dans et d'après 5.2 un minimum
absolu de y dans cd.

[Une traduction du corollaire ci-dessus est qu'un tel réseau perd des

vecteurs minimaux par toute déformation suffisamment petite.]

6. IsoduALITÉ

Soit L un réseau de E, et soit L*sondual. Si o e 0(E) est une isométrie
du réseau Lsur son dual L*(ondit alors que est a-isodual), l'égalité
'o g"1 montre que a applique L* sur L,desorte que o2 est un automor-
phisme du réseau L. On peut préciser ce résultat en introduisant le groupe
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Aut*{L) des transformations orthogonales appliquant L sur L ou L*; ce

groupe contient le groupe Aut(L) Aut(X*)) avec l'indice 1 ou 2, l'indice
étant égal à 2 lorsque le réseau est isodual sans être unimodulaire. Dans ce cas,
les isométries de L sur son dual sont de la forme t a o u, c désignant
l'une d'entre elles, et u parcourant le groupe d'automorphismes de L.

Un réseau o-isodual est également o'-isodual pour o' ± o, o' ± o-1
et o' ± cm pour tout entier m impair. Il en résulte que, si l'isométrie g est

d'ordre 2km, avec m impair, om est encore une isométrie de L sur L*, dont
l'ordre est cette fois une puissance de 2; les isométries d'ordre une puissance
de 2 présentent de ce fait un intérêt particulier.

Soit g e E) et soit Je, la famille des réseaux o-isoduaux.

6.1. Proposition. Soit Gg le sous-groupe de Gl(is) défini par

G0 {u e Gl (is) I 1ugu g}

(1) La composante connexe d'un réseau L e ß~Q est contenue dans

l'orbite de L sous l'action de G0.

(2) Le groupe Gc est stable par transposition.

(3) Gg est le groupe orthogonal de la forme bilinéaire

b0:(x,y)^x. ay

(4) L'espace ^ associé à -9~0 est

&' {u e End5(is) | au - ua} C KerTr

Démonstration. (1) Soient L e et u e Gl^). On a les équivalences
suivantes :

u{L) e ßf & (u(L))* g(u(L)) & {u-l(L*) a(u(L))
& tU'1(c(L)) G(U(L)) & G~UUGU E G1(L)

d'où l'on déduit, lorsque u est suffisamment proche de l'identité,
g ~1 *ugu Id.

(2) La transformation g étant orthogonale, on a les équivalences

u e Gö & lu~l e Gg o lu e Gg.

(3) Cela résulte de l'équivalence, pour u e Gl {E), x e E, y e E,

u(x). Gu(y) x. g (y) & x. (uGu(y) x Gy

(4) On utilise la proposition de Bourbaki citée au début du § 2, avec pour
involution l'application u u1 g1ug~1. On a en effet (w1)1 o2wo-2,
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et u commute à o2 (les réseaux o-isoduaux sont des G-réseaux au sens

de l'exemple 2.2 pour le groupe G engendré par o2).

Etant donnés un sous-groupe fini G# de O (E) et un sous-groupe G

d'indice 2 de G#, on pourrait plus généralement énoncer la proposition 6.1

pour des réseaux (G#, G)-isoduaux, c'est-à-dire stables par G et échangés

avec leur dual par G#\G. L'espace W est alors défini de façon analogue,

par la formule ou (p (o) va, où cp : G* -> { ± 1} est le caractère de noyau G.

La projection sur W est donnée par la formule (cf. [B-M2], p. 45 dans le

cas des G-réseaux):

1 „projgr(tf) —— L (Pis) sus-1
I G# | s e G#

6.2. Proposition. S'il existe un réseau o-isodual, la forme bilinéaire
bG est de déterminant ± 1, égal au déterminant de o.

Démonstration. D'une façon générale, soient o e Gl(ii), bQ la forme
bilinéaire associée comme ci-dessus à o, et J? (e\ %

• • - en) une base de E
et sa base duale. On a

det^ùG det^*o(<^) det^ o(ß) det^* g/i det(o)det(Gram(^))

Soit alors L un réseau o-isodual et SS une base L. On a alors det(Gram(^))
det(L) 1, donc det(Z?a) det(o).

Il est immédiat que la forme ba est symétrique (resp. alternée) si et

seulement si l'on a g2 + Id (resp. o2 - Id), et que, dans le premier cas,
si + 1 (resp. - 1) est valeur propre d'ordre p (resp. q) de o, ba est alors
de signature (p, q).

6.3. Définition. Nous dirons que L est orthogonal (resp. symplec-
tiquë) s'il possède une isométrie o sur son dual pour laquelle ba est

symétrique (resp. alternée).

[Cette notion de réseau symplectique coïncide avec celle de [B-S] et de son
appendice.]

Dans la suite, nous considérons essentiellement des réseaux isoduaux
orthogonaux ou symplectiques. Notons que tout réseau unimodulaire est
trivialement orthogonal pour les automorphismes ± Id.

Revenant au cas général, on remarque que, sur un réseau o-isodual L,
la forme ba ne prend que des valeurs entières. Précisons ses valeurs sur



352 A.-M. BERGÉ ET J. MARTINET

l'ensemble S(L) des vecteurs minimaux de L : soient a et y e S(L) des vecteurs
minimaux de L ; on a | x. o (y) | ^ N{x) N(L) ^ yn, et donc pour n ^ 7

ou n 8 et L =£ E%, ba(x,y) est égal à 0 ou ±1.
Il en résulte qu'un tel réseau, si ses vecteurs minimaux engendrent E et

s'il possède un vecteur minimal x appartenant également à son dual, est

isométrique à Zn. En effet, soit L' un sous-réseau de L ayant une base

(ely e2, en) formée de n vecteurs minimaux de L. On a N(x) 1, donc

N(L') N(L) 1, ce qui entraîne les inégalités

1 det(L) ^ det{L') ^ N(el)N{e1)... N(en) N(L)n 1

La dernière inégalité est l'inégalité de Hadamard, qui est en fait une
égalité, ce qui entraîne que les vecteurs e\,e2t en sont deux à deux

orthogonaux.

6.4. Exemples

(1) Tout réseau plan convenablement normalisé est appliqué sur son dual

par les rotations ± o d'ordre 4, donc est symplectique, cf. [C-S2, appendice
de B-S].

(2) On trouve dans [B-Ml], §5 la description d'une famille de réseaux Lt
de dimension 4 ayant 9 vecteurs minimaux (la classe a9) dépendant d'un
paramètre modulo similitude, que l'on peut représenter dans une base

(^i > e2> ^3 > £4) convenable par les matrices de Gram

- 1 - 1 t \

2 1 - t - 11

1 -1 2 - 1

- 1 - 1 2 /

pour \ ^ t < L Ce sont, comme le réseau hexagonal A2, des réseaux

sur l'anneau des entiers d'Eisenstein Z[co], co2 + co + 1 0 et qui deviennent

isoduaux par renormalisation, comme on le voit en vérifiant que l'application
o : (pi e2, e3, e4) (- ef, ef, ef, - ef) est une similitude de Lt sur Lf.
Le groupe Aut#(L/) est d'ordre 144 sur l'intervalle ]|, 1 [, et d'ordre 288

(resp. 2304) pour t \ (resp. t 1), correspondant à un réseau semblable
à L\ — A4)0 (resp. à D4). Ces réseaux sont symplectiques et non orthogonaux
sauf L\ et D4 pour lesquels le groupe Aut#(L,) contient des isodualités

d'ordre 2 de signatures arbitraires.

Pour t croissant de \ à 1, l'invariant d'Hermite du réseau Lt, égal à

2[(^ + 1) (2 - t)] ~1/2, croît strictement de | à y4 ]/2.

2

t
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(3) Dans R", n > 8 pair, muni de sa base canonique (si, £2, •••> on

pose c - \ (81 + 82 + • • • + £n) et s' \ (-£1 + £2 + ' ' * + £/»)» et Von

considère les réseaux Dn, définis dans Z" par la congruence Ü ,-*/ 0 mod 2,

et Dn u (s + Dn). Le groupe d'automorphismes Aut(DJ de Dn

s'identifie au produit semi-direct (± l)n xi celui de D* au groupe de

Weyl du précédent (les automorphismes (8/) h» (± s/) de déterminant impair

échangent 8 et s' modulo Dn). Pour n 2 mod 4 (resp. n 0 mod 4), on

a D + * =DnKj(z' + Dn) (resp. Dj* Dj), et Aut#{D + s'identifie à

Aut(LL) pour n 2 mod 4 et est égal à Aut(D^) sinon. Les isométries

de D„+ sur son dual sont les automorphismes de Dn composés d'une

permutation et d'un nombre impair (resp. pair) de changements de signes

des 8/. Les réseaux D* sont symplectiques, et également orthogonaux avec

pour systèmes de valeurs propres possibles les combinaisons à k f mod 2

valeurs propres - 1.

(4) Soit p 3 mod 4 premier. Les réseaux A^p_\l)/^ de Craig ([C-S],
ch. 8, §6) sont de norme isoduaux de type symplectique après renormalisation,

eutactiques et conjecturalement parfaits, cf. [B-B], §3.

(5) Watson ([Wa]) a déterminé les valeurs maximales de l'invariant s pour
les réseaux de dimension ^ 7 dépourvus de sections minimales de type A2.
Ce maximum est en particulier atteint sur un réseau unique (à isométrie près)
entier pour le minimum 3, que nous notons Wan. Ces réseaux s'obtiennent

comme sections de ]/2E*. Le réseau Wa6, défini par la matrice de Gram A
ci-dessous, est proportionnel à un réseau o-isodual pour une transformation

o de type symplectique. Cela se vérifie matriciellement par la formule
A *Si (4A -1) S1, où Si représente une isométrie o 1 dans le couple de bases

(^, ./y*) pour lequel on a Gram(3^) A:
3 -1 -1 -1 -1 1 \
- 1 3 -1 1 1 -1
- 1 - 1 3 -1 1 -1
- 1 1 - 1 3 1 1

- 1 1 1 1 3 -1
\ 1 - 1 - 1 1 - 1 3

1° 0 0 0 0 - IV
0 0 0 1 0 1

0 1 -1 0 0 0
1 -1 0 0 0 1

0 0 -1 1 0 1

\l -1 0 -1 -1 0
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Le fait que Wa6 soit symplectique se voit en contrôlant que S (ASj-1)3
est telle que S2 - 64 Id.

[Les principaux invariants de Wa6 sont s(Wa6) 16, det(JPtf6) 64,
| Aut(Wa6) | 29. 32. 5. Signalons les similitudes Wa6~D£,Wa5~A 25

~ (P2S)* et Wa4 ~,43*.]

Dans l'étude des relations entre un réseau et son dual, il y a deux
normalisations naturelles: celle qui donne aux deux réseaux le même déterminant

(alors égal à 1, vu la formule det(L*) det(L) l) et celle qui leur donne la

même norme.

6.5. Définition. Nous dirons qu'un réseau L est normal si ces deux

normalisations coïncident. (Il revient au même de dire que les deux réseaux

ont même invariant d'Hermite.)
Il est clair que tout réseau isodual est normal.
Soit L un réseau normal, de déterminant d et de norme m, et soient d*

et m* les invariants analogues de L*. (On a dd* 1.) Lorsque l'on effectue

sur L une homothétie de rapport ]/X, L* subit une homothétie de

rapport inverse. On transforme alors d en D Xnd, m en M Xm, d*
en D* X~n d* et m* en M* X~lm*. L'égalité M* M équivaut à

6.6. Proposition. Pour qu'un réseau soit normal, il faut et il suffit
que ses invariants d, m, m* vérifient l'égalité

L'étude de la liste des réseaux parfaits jusqu'à la dimension 7 donnée dans

[C-Sl] montre que les seuls réseaux parfaits de dimension < 7 qui sont
normaux sont (à similitude près) P J - Z, Pl2 - A2, P\ - DA et P\ - A \ ~ P6.
Il s'agit dans tous les cas de réseaux isoduaux. On vérifie de même que, parmi
les réseaux de racines irréductibles, seuls Z, A2, D4 et Es sont normaux.

La proposition suivante, dont nous ne donnerons pas la démonstration,
précise la proposition 4.4 dans le cas du groupe Ga:

m*
X2 —, d'où

m

6.7. Proposition. Les éléments u de G0 sont de la forme

u fv
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où f est une isométrie qui commute avec g, et v un automorphisme

symétrique positif dont les valeurs propres =£ 1 sont deux à deux inverses,

et dont les sous-espaces propres Ex vérifient o(Ex) Ex-\.

Nous en venons aux résultats de finitude annoncés dans l'introduction :

on se borne aux réseaux isoduaux de densité minorée. Rappelons que si

l'ensemble S des vecteurs minimaux d'un réseau L engendre E, l'invariant
d'Hermite de L est ^ 1 (reprenant dans un contexte plus général les remarques

qui suivent la définition 6.3, on voit en effet que l'inégalité de Hadamard

appliquée à un sous-réseau L' convenable de L donne det(L) ^ det(Z/)

^N(e[)N(e2)...N(e'n) N(L)\ soit y (L) ^ 1).

6.8. Théorème. Les réseaux de dont les vecteurs minimaux

engendrent E se répartissent en un nombre fini de classes au sens de la

définition 5.1.

En utilisant le théorème 5.2, on en déduit (comparer avec [B-M3]):

6.9. Corollaire. A similitude près, il n'y a qu'un nombre fini de

réseaux L^-eutactiques dont les vecteurs minimaux engendrent E.

Démonstration de 6.8. On sait depuis Hermite qu'il existe une constante

Kn telle que tout réseau L de dimension n admet une base dS avec

N(ex)... N(en) ^ Kn det(L), ce qui entraîne que les composantes des

vecteurs minimaux dans cette base sont bornées (par ]/K~n, cf. [Ber],
lemme 2.7) et donc en nombre fini. On a ici det(L) 1 et N(L) ^ 1, donc

N(ei) ^ Kn pour tout /. La matrice Ba de la forme ba dans la base M est

donc bornée (on a | b0(ef9t ej) | | o(c;) e}[ ^ \/W(ef)N(ef) ^ Kn). Ces

matrices Ba sont donc elles aussi en nombre fini. Soient alors Lx et L2 deux
réseaux de qui ont dans des bases convenables et S2 même matrice
B0 et mêmes composantes de vecteurs minimaux. Soit u e Gl(2i) tel que
S% e= u(.y/f). La deuxième condition signifie que S(L2) est égal à u(S(Lx)).
Quant à la première, elle équivaut à u e O(ba) Gö (prop. 6.1,(3)). Ainsi,
Lx et L2 sont dans la même g-classe.

Remarque. La démonstration peut être adaptée à la situation de

l'exemple 2.2, c'est-à-dire celle des réseaux stables par un sous-groupe fini G
donné de 0(E), et dont les vecteurs minimaux engendrent l'espace.

Il suffit pour cela de remplacer la matrice B0 (o(£,•).£,•) par les

matrices Bg (g(ej). ef) g e G des automorphismes g e G dans la base d/i.

Puisque G opère sur le réseau de base d/f ces matrices ont des coefficients

entiers; ils sont de plus bornés, car les produits N(ef)N(ej) sont
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bornés: on a en effet N(ef) ^ ^ ^ (voir [Ber], 2.7), et N(ej)N(L)n~l
^ Kn àQt{L) par choix de la base «réduite» d'où N(e*)N(ej) ^

^ K2n. La démonstration s'achève comme ci-dessus, en remarquant
que si les deux bases & et u(ß) de E fournissent la même représentation
intégrale g i-> Bg du groupe G, le changement de base u appartient au
commutant ^ de G (comme on a g(u(ej)) (w(£/))* g(u(ej)) iu~l(ef)

(u~lgu)(ej). e*, la condition sur w s'écrit u~lgu g pour tout
g e G).

Les G-réseaux dont les vecteurs minimaux engendrent l'espace se
répartissent donc en un nombre fini de G-classes. C'est en particulier le cas des

réseaux G-parfaits ([B-M2], prop. 2.9). Comme de plus une G-classe contient

au plus un réseau G-parfait ([B-M2], prop. 2.9), on retrouve ainsi le résultat
de finitude de [Ja].

7. Réseaux isoduaux orthogonaux et symplectiques

On conserve les notations du § précédent. On note g un élément de O(E).
On rappelle que bQ désigne la forme bilinéaire entière (x, y) x oy, et

qu'un réseau g-isodual est dit orthogonal (resp. symplectique) si ba est

symétrique (resp. alternée). Il revient au même de dire que g2 a pour carré + Id
(resp. - Id).

Le cas où g ± Id est particulier: les réseaux g-isoduaux sont les réseaux

unimodulaires, et il est facile de vérifier que les composantes connexes de

sont les classes d'isométrie de réseaux unimodulaires (cf. ci-dessous). Tous sont
donc strictement o-extrêmes. Sauf mention du contraire, nous supposons
g gfc ± Id.

Nous allons tout d'abord examiner la structure de l'espace .fG. Pour ce

faire, nous rappelons deux résultats sur les formes bilinéaires entières de

déterminant inversible. Le premier, dû à Milnor et Serre, est démontré dans [Se],
le second (beaucoup plus facile) dans [M-H].

Rappelons qu'un Z-module quadratique (sans torsion, de type fini) (M, b)
est dit pair si b(x,x) ne prend que des valeurs paires, et impair dans le cas

contraire. Etant donné un réseau M, on note M+ (resp. M-) le module
quadratique M muni de la forme bilinéaire (x, y) u» x y (resp. (x, y) - x y).
On note U le module quadratique (Z2, 2xj x2). Enfin, pour p,q ^ 0 entiers,

pM + qN désigne la somme orthogonale de p copies de M et de q copies
de N.
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7.1. Lemme. Un Z-module quadratique indéfini impair (resp. pair) est

isométrique à une somme pZ+ + qZ~ (resp. pU + qE% ou pU + qE%).

Sa signature (r,s) est égale à (p,q) (resp. à (p + 8q,p) ou (p,p + 8q)).

Un tel module est caractérisé à isométrie près par son type (pair ou

impair) et sa signature, et il existe si et seulement si, dans le cas pair, on

a s r mod 8.

7.2. Lemme. Soit A un anneau principal, et soit M un A-module

de type fini, sans torsion, de rang n, muni d'une forme alternée de

déterminant inversible dans A. Alors, n est pair, soit n 2m, et M est

isométrique à une somme orthogonale de m copies de A2 muni de la

forme x1y2~x2yi.
Nous en venons maintenant aux réseaux o-isoduaux orthogonaux ou

symplectiques, en supposant o ± Id, ce qui assure dans le premier cas que
la forme ba est indéfinie.

7.3. Théorème. Soit o e 0(E) de carré ± Id, o ^ ± Id. Alors,
la famille ya est composée d'une unique orbite sous G0 (représentée

par Zn muni d'un automorphisme convenable), sauf dans le cas des

réseaux orthogonaux de dimension paire, où il existe une seconde orbite
représentée par des réseaux Zn ou (selon la signature de ba).

Démonstration. Comme G0 est le groupe orthogonal de ba, deux

réseaux appartiennent à la même orbite sous Ga si et seulement si les formes
ba qui leur sont associées sont isométriques. Les lemmes 7.1 et 7.2 montrent
qu'il y a selon les cas au plus une ou deux orbites, et les exemples de Z" et

de D*m (cf. ex. 6.4, (3)) montrent que ces orbites existent effectivement.

La proposition ci-dessous décrit les espaces W dans les cas orthogonaux
et symplectiques. Sa démonstration découle tout de suite de la définition
de F (prop. 6.1, (4)).

7.4. Proposition.
(1) Dans le cas orthogonal, soit E E+ ± E~ la décomposition

de E en sous-espaces propres pour o. On a alors

F {u e Ends(E) | u(£ + C E~ et v(E~) C E+ }

et donc dim W dimi?+ dimi?"
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(2) Dans le cas symplectique, soit une base orthonormée de E dans

laquelle la matrice de Gg est formée de blocs diagonaux de la

l 0 l\forme Alors, les éléments de W sont ceux qui ont pour\-i oj
les matrices symétriques formées de blocs de la forme

; la dimension de W est donc m2 y m (on a posé

matrices les matrices symétriques formées de blocs de la forme

f\b -a)
n 2m).

[Dans le cas symplectique, la dimension du commutant de g dans

End5(is) est m2 ([B-M2], prop. 3.3), et l'on a bien _ mi _ mi + m ^

7.5. Remarque. Lorsque g ± Id, la dimension de W> donc aussi

celle de la sous-variété des automorphismes symétriques de G0, est nulle. Il
en résulte que les composantes connexes de sont les classes d'isométrie de

réseaux unimodulaires. La classification a été faite jusqu'à la dimension 25,

cf. [C-S], ch. 16-18 et les références qui s'y trouvent. Le groupe Gg est dans

ce cas le groupe orthogonal 0(E), qui a deux composantes connexes. Le
nombre d'orbites de 3Fa sous Gg tend vers l'infini avec la dimension de E, ce

qui montre que l'hypothèse «g y ± Id» ne peut pas être supprimée de l'énoncé
du th. 7.3.

7.6. Théorème. Dans le cas orthogonal (avec g ^ ± Id) ou symplectique,

les réseaux g-extrêmes sont strictement extrêmes, et leurs vecteurs

minimaux engendrent l'espace E.

Démonstration. Compte tenu du th. 4.5,(ii), il suffit de prouver que,
si Le JLj est un réseau g-extrême, l'ensemble S de ses vecteurs minimaux

engendre E. La démonstration se fera par l'absurde en utilisant le fait que,
si v g ^ est tel que (px(u) ^ 0 pour tout x e S, il existe un réseau extrême (de

la forme (exp(?#/2)) (L) pour t > 0 assez petit) dont l'ensemble des vecteurs

minimaux est S n Ker v (cf. 4.6-4.8). Dans tous les cas, on se ramène au cas

où les vecteurs minimaux sont contenus dans un sous-espace g-stable de E
de codimension ^ 2.

Commençons par le cas symplectique. Si S est contenu dans un hyperplan

H de E, soit F H n g (H) le sous-espace g-stable maximal de H. Dans une
base -A convenable de P F1, la matrice de la restriction de g à P est

On considère l'endomorphisme v e W nul sur F et dont la
' ')•
i o!

(0 1\
restriction à P a pour matrice | dans x/i. Alors (px(^) est nul ou
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de signe constant sur Phyperplan H, a fortiori sur S. En effet, soit

x Xe + y, X e R, y e F, l'écriture de x e H selon la décomposition

H Re ± F. On a (pxO) v(x) x+(car

D(e). y e u(y) 0); ainsi, quitte à remplacer v par - u, on peut supposer

<P*0>) > 0 pour tout xe H. Il existe donc un réseau o-extrême dont

l'ensemble des vecteurs minimaux est Ker u n S contenu dans F. On peut donc

supposer désormais S contenu dans F. Soit alors K un hyperplan de F disjoint
de S, G K n o(K) le sous-espace stable correspondant, et Q le plan orthogonal

de G dans F, de sorte que l'on a E P ± Q ± G. On considère v e le

nul sur G et qui échange les plans Pet Q; dans une base de P _L Q convenable,

on a

^(O) I A A A 1 '

On a alors cpxO) 0 pour tout x e F Q ± G, car v(x) appartient

à P F1, donc cet endomorphisme u permet de construire un
réseau (o-extrême) dont l'ensemble des vecteurs minimaux est

S n Ker uCSnGCSnK=0, ce qui est absurde.

Supposons désormais o2 Id, o ^ ± Id, notons E+ et E~ les sous-

espaces propres de o pour les valeurs propres +1 et — 1, et soit L un
réseau o-extrême dont l'ensemble S des vecteurs minimaux est inclus dans un

hyperplan H de E Il existe un hyperplan o-stable F de H dont le plan orthogonal

P F1 contient un vecteur propre e de o pour la valeur + 1 et un
vecteur propre e' pour la valeur - 1 {e et e' sont supposés unitaires). Si H
n'est pas stable par o, il suffit de prendre comme dans le cas symplectique
F H n o(N). En effet, si le plan F1 était contenu dans E+ par exemple,

il en serait a fortiori de même pour la droite HL C F1, de sorte que H
serait o-stable. Ainsi la restriction de o au plan stable F1 est =£ ± Id. Si

l'hyperplan H est stable, par exemple si H± est inclus dans E + on considère

un plan P engendré par la droite et un vecteur non nul de E~ (par
hypothèse il en existe). Le sous-espace o-stable F P± répond à la question.
L'endomorphisme u qui est nul sur F et qui échange e et e' appartient à A et

l'on peut supposer (px(^) ^ 0 pour tout x e H (même démonstration que dans
le cas symplectique). Il permet donc de construire un réseau o-extrême L' dont
l'ensemble S' S n Ker u de vecteurs minimaux est contenu dans F.
Désormais, L désigne un réseau o-extrême dont l'ensemble S des vecteurs
minimaux est inclus dans un sous-espace o-stable G de F de dimension
minimale. Puisque G est stable par o, et non nul, il contient au moins un vecteur
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propre (unitaire) a pour g, par exemple a e E +. L'endomorphisme u qui
échange les vecteurs e' et a et qui est nul sur l'orthogonal du plan (a,er) appartient

à ^ (si a appartient à E~, on remplace e' par e). De plus, S C G

est inclus dans l'hyperplan Kqi u ± Rö sur lequel cpx(^) est nul ou de signe

constant (même démonstration que dans le cas symplectique). On peut
donc construire à partir de u ou de — v un nouveau réseau g-extrême dont
l'ensemble des vecteurs minimaux S n Ker v est contenu dans le sous-espace o-
stable G n Ker v strictement contenu dans G (puisque a n'appartient pas
à Ker y), ce qui est contraire au caractère minimal de G.

8. Classification des réseaux isoduaux de petite dimension

Dans ce paragraphe on considère un élément g e 0(E), généralement tel

que g2 ± Id (et g^A ± Id), et l'on recherche les réseaux o-isoduaux
strictement extrêmes pour g. D'après le corollaire 4.9, le nombre 5" de

couples ±x de vecteurs minimaux d'un tel réseau est ^ dim(^fc) + 1,

puisque le groupe de Lie % est contenu dans le noyau du déterminant. Dans

les cas orthogonal et symplectique, on déduit du th. 7.4 les minorations
suivantes :

8.1. Proposition. Soit L un réseau g -isodual a -extrême.

(1) Si L est ^-orthogonalon a s ^ pq +1, où p et q sont les

multiplicités des valeurs propres +1 et —1 de c (p + q n).

(2) Si L est g -symplectique, on a s ^ m2 + m + 1 (n 2m).

Le cas de la dimension 2 est facile : les réseaux de déterminant 1 sont tous
isoduaux pour une rotation d'ordre 4, et les réseaux extrêmes sont semblables

à A2. (Du reste, on a 5 ^ 3 par 8.1.) Ceux qui sont isoduaux pour une autre
transformation sont semblables à Z2 ou à A2.

Les réseaux isoduaux de dimension 3 ont été décrits par Conway et Sloane

dans [C-S3], qui trouvent deux familles. L'une d'elle, qui correspond à une
rotation d'ordre 4, est formée de réseaux réductibles, cf. la fin du §4. L'autre
correspond au cas où ± g est une rotation d'angle n. Pour cette famille, il y
a un unique réseau o-extrême, le réseau ccc de [C-S3].

On retrouve ce résultat en utilisant la classification (au sens de la déf. 5.1,

appliquée à l'exemple 2.3) qui est faite dans [Ber]. On montre en effet
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([Ber],2.8) que les seules classes de réseaux de dimension 3 avec s(L)
s(L*) ^ 3 sont représentées (modulo similitudes) par les matrices

it 1 t j - 1/3 < t < 1/2 et | 2t — 1 1 - t\ 1/3 < t < 1/2

\t t 1/

On voit facilement que les réseaux correspondants sont normaux (et en fait
isoduaux) uniquement pour t 0 dans le premier cas (il s'agit alors de Z3),
et pour t ]/2—1 dans le second, ce qui correspond au réseau ccc.

Le but de la suite du § est d'obtenir une classification des réseaux isoduaux
de dimension 4 ayant beaucoup de vecteurs minimaux. Nous nous appuierons
sur la notion de réseau normal (déf. 6.5). Nous donnerons en passant des

résultats un tout petit peu plus généraux.

8.2. Théorème. Un réseau normal de dimension < 8 possédant une
section hyperplane critique (i.e. absolument extrême) est semblable à l'un des

réseaux de racines A2, D4, E8.

Démonstration. Soit L un tel réseau, et M une section hyperplane critique
de L, de norme N(L); son déterminant est donné par la formule

N(L)n ~ 1

det (M) -
y"-I n - 1

Le minimum de L* est atteint sur les vecteurs primitifs de L* orthogonaux
à M, et l'on a donc

jV(jL*)
det<M) 1 N(L) 1

det (L) det(L) ynn~_\

Le réseau L étant normal, la proposition 6.6 entraîne l'égalité

N(L*) N(L) det(L) ~2/n

En égalant ces deux expressions, on trouve la relation

Y (L)n~2 — Y" : I
•

Or, l'inégalité de Mordell (cf. [Cas], ch. X, §3) s'écrit

yn~2 < yn-\t n ^ Y n l '

Le réseau L réalise donc le maximum yn de l'invariant d'Hermite, et ce
dernier vérifie y"-2 ce qui, pour les dimensions pour lesquelles sa
valeur est connue, i.e. « < 8, ne se produit que pour n 2, n 4 et
n 8.
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8.3. Théorème. Soit L un réseau normal de dimension paire
n 2m, et soit M une section critique de dimension m de L, de même

norme que L. Alors, l'orthogonal M1- de M dans L* est critique et
de même norme que L*.

Dans le cas m 2, si & est une base de L formée de vecteurs
minimaux dont les m premiers engendrent M, les m derniers vecteurs
de sont minimaux et engendrent ML.

Démonstration. De façon générale, pour toute section M de tout
réseau L, on a det(M) det(T)det(ML). Dans le cas qui nous occupe,
compte tenu de la proposition 6.6, on a N(L*yn > et donc

y (ML)m det (M) N(ML)m N(L)m N{M1 )m
_

N(ML)m ^ ^ ^

y(M)m
~~

det (M1) N(M)m
~

N(M)m N(L*)m N(L*)m

puisque M réalise le maximum ym de l'invariant d'Hermite en dimension m,

l'inégalité précédente est une égalité, et l'on a donc y (M1) - y (M) ym

et N{ML) N(L*), ce qui démontre la première partie de l'énoncé.

Considérons maintenant la base & - (e\,..., en). Pour tout vecteur

minimal a' de L*, les composantes dans de x' sont les produits scalaires

x'. et, entiers bornés par (utiliser l'inégalité de Schwarz)

]/N{x')N{ei) ]/N(L*)N(L) ^y(L*)y(L) ^ yn < 2

et donc éléments de {0, ± 1}, quel que soit n < 8.

On applique ce qui précède à un vecteur x' e ML et à ses composantes
dans la base (e* + l, e*) de M1.

Pour m 2, M1- est semblable à A2 et possède donc 3 couples de vecteurs

minimaux. Mais x e* + e* et y e* — e* ne peuvent être simultanément
minimaux («méthode des déterminants caractéristiques» de Korkine et

Zolotareff: (x,y) et (e*,e*) doivent engendrer le même réseau), donc
e* et e* sont minimaux.

Nous passons maintenant au cas de la dimension n — 4. On utilise la
classification de [B-MJ, §5, où les réseaux engendrés par leurs vecteurs minimaux
sont répartis en 18 classes (au sens du §5) a4,a5, b5, a9, b9, al0, ai2,
les deux dernières étant formées des classes de similitude de A 4 et de D4 ; la
classe a9 est décrite dans l'exemple 6.4,(2).

8.4. Théorème. Les réseaux normaux de dimension 4 possédant au

moins 7 couples de vecteurs minimaux sont les réseaux de la classe a9 ou

sont semblables à D4.



DENSITÉ DANS UNE FAMILLE DE RÉSEAUX 363

8.5. Corollaire. Les réseaux isoduaux symplectiques o-extrêmes sont
les réseaux semblables à DA.

Démonstration de 8.5. On sait (prop. 8.1) qu'un tel réseau possède au

moins 7 couples de vecteurs minimaux, et, d'après l'exemple 6.4,(2), l'invariant

d'Hermite ne possède pas de maximum relatif sur la classe a9. D

Démonstration de 8.4. Le cas d'un réseau possédant une section hyperplane

critique de même norme résulte du th. 8.2, ce qui résoud le cas des classes

dq, b%, b9, aio et a \2.

Il reste à examiner les réseaux L de l'une des classes aq, bq, c7, as.
Le cas de la classe bq est facile. Elle est caractérisée par l'existence de

7 vecteurs minimaux répartis dans 3 réseaux A2 ayant un vecteur minimal e

en commun. D'après le th. 8.3, le réseau orthogonal à e dans L* possède
3 sections minimales de type A2, et donc 6 vecteurs minimaux. Il est donc
semblable à A3, et l'on conclut par le th. 8.2 appliqué à L*.

Pour traiter les trois derniers cas, nous avons utilisé le théorème 8.3

complété par des calculs explicites de matrices adjointes, conduits en s'aidant
du système PARI. Nous illustrons le procédé en traitant ci-dessous le cas de

la classe a8.
Il résulte de [B-Ml], §5, que ces réseaux peuvent être définis dans une

base (el9e2,e$>e4) convenable par les matrices de Gram ci-dessous:

On trouve N(e*) - N(e*) 2(u - t) (1 - u - t), expression qui
doit être nulle puisque {e2,eA) est un réseau de type A2, cf. th. 8.3. Si
u - 1 - L on obtient des matrices représentant a9. Si u t, on trouve
2 N(e{ — e\ e* (2 — t) (21 - 1) et \ N(e*) + e* e* 3 (2 — t), expressions

qui ne peuvent s'annuler que pour t \ | 11 ne peut pas dépasser la
valeur 1), cas dans lequel on obtient le réseau L24 e a9.

8.6. Remarque. Nous avons recherché les réseaux normaux dans les
classes c6 et d§ (ce qui couvre tous les cas où il y a deux sections minimales
de type A2). La classe c6 n'en contient pas. La classe d6 contient une famille
à deux paramètres de réseaux normaux, qui sont en fait isoduaux de type
symplectique. Le bord de cette famille est la classe â~9 a9 u al2. Elle
contient des sous-variétés de dimension 1 formées de réseaux isoduaux de type
orthogonal. En tant que réseaux o-isoduaux de type orthogonal, L\ et DA
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sont o-extrêmes pour chacun des systèmes de valeurs propres possibles. Ce
sont probablement les seuls.

Nous avons également recherché les réseaux o-isoduaux pour un o de
valeurs propres (+1, +1, -1, -1) admettant une base de vecteurs minimaux
conforme au lemme 7.1. Outre la famille ci-dessus, on trouve une famille à
deux paramètres à la fois symplectique et orthogonale avec s 4. Son bord
est contenu dans l'adhérence de la première famille.

Voici des matrices de Gram pour chacune de ces deux familles
(renormalisées à la norme 2):

2 -l X y \I 2 0 t « Ï

-1 2 y -x-y 1 0 2 u -1
X y 2 -1 I1 t u 2 0

y -x-y -i 2 I \u -t 0 2 1
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