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L’Enseignement Mathématique, t. 41 (1995), p. 335-365

DENSITE DANS DES FAMILLES DE RESEAUX.
APPLICATION AUX RESEAUX ISODUAUX

par Anne-Marie BERGE et Jacques MARTINET'

RESUME. On s’intéresse dans cet article & la densité des empilements de spheres
associés a des familles de réseaux qui se déduisent de I’un d’entre eux par ’action d’un
sous-groupe fermé du groupe linéaire. La théorie des groupes de Lie permet de donner
une caractérisation a la Voronoi des maxima locaux de densité, recouvrant de tres
nombreuses situations étudiées auparavant. On applique ensuite ces méthodes a 1’étude
des réseaux isoduaux récemment définis par Conway et Sloane.

ABSTRACT. We study in this paper the density of sphere packings arising from
families of lattices which consist in the orbit of one of them under the action of a closed
subgroup of the linear group. The theory of Lie groups yields a characterization ““a la
Voronoi” of the local maxima of density which contains many previously known
examples. These methods are then applied to isodual lattices, recently defined
by Conway and Sloane.

1. INTRODUCTION

Soit £ un espace euclidien de dimension #, et soit % 1’espace des réseaux
de E, muni de la topologie pour laquelle un systéme fondamental de voisi-
nages d’un réseau L s’obtient en associant a tout voisinage 7 de
Id dans GI(E) I’ensemble des réseaux u(L), u € 7. Pour x € E, la norme
de x est N(x) = x.x (le carré de la norme euclidienne). A toute base
7 = (ei,ey,...,e,) de E, on associe sa matrice de Gram Gram /(%)
= ((e;. e;)). L’invariant d’Hermite d’un réseau L est y (L) = N(L)det(L) ~!/~,
ou N(L) =inf,c; ,»oN(x) est la norme ou minimum de L et det(L) est
le déterminant de L (déterminant de la matrice de Gram d’une base de L);
Y(L) ne dépend que de la classe de similitude de L, et y7/2 (L) est
proportionnel a la densit¢é de I’empilement de sphéres associé 2 L;
Yn =SUpre # Y(L) est la constante d’Hermite pour la dimension n.

I Membres du laboratoire U.M.R. 9936 du C.N.R.S.
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Nous étudions ici la densité dans des familles .7 de réseaux qui sont des
orbites sous 1’action d’un sous-groupe fermé ¥ du groupe linéaire GI(E),
dont nous utilisons la structure de groupe de Lie. Un certain nombre de
questions, classiques lorsqu’il s’agit de la famille % de tous les réseaux de E,
se posent naturellement. La premiére est celle de la détermination des réseaux
extrémes pour .7, c’est-a-dire des réseaux de .7 sur lesquels l’invariant
d’Hermite atteint un maximum local parmi les réseaux de .7, et en particulier

N

la recherche des réseaux critiques pour .7, sur lesquels I’invariant d’Hermite
atteint son maximum absolu y (.7 ). L’existence de réseaux critiques n’est pas
¢vidente a priori, mais se démontre souvent facilement en utilisant le théoreme
de compacité de Mahler, ce qui justifie que I’on entreprenne le calcul
de y(.7) en déterminant tous les réseaux extrémes.

Il est utile de disposer d’une caractérisation commode des réseaux extrémes
pour .7, analogue a celle de Voronoi dans le cas classique, faisant intervenir
les notions de réseaux «parfaits» et «eutactiques». On est amené a consi-
dérer une notion plus restrictive que ’extrémalité, a savoir celle de réseaux
strictement extrémes pour .7 : il s’agit des réseaux L possédant un voisinage
dans .7 sur lequel ’invariant d’Hermite est strictement inférieur a celui
de L sauf lorsqu’il s’agit d’un réseau semblable a L. Cette propriété, qui est
vérifiée dans le cas classique ou I’on a .7 = %, n’est toutefois pas générale.
Nous avons rencontré des contre-exemples dans certaines familles de réseaux
isoduaux; un exemple est décrit a la fin du §4, dans lequel vy est constant
sur une variété de réseaux (modulo similitude) de dimension 2.

Les notions de perfection et d’eutaxie que nous utilisons sont relatives,
comme dans [B-M-S], a un sous-espace vectoriel 7 de I’espace Ends(FE)
des endomorphismes symétriques de E associ¢ de facon naturelle a la
famille .7.

On peut sans inconvénient faire la théorie dans le cas d’un groupe ¢
connexe. Pour une telle famille, ’espace 7 se définit par le procédé suivant.
Notons ‘u le transposé de u € GI(F). Comme ¢ est un sous-groupe de Lie
de GI1(E) (Bourbaki, Lie III. §8, th. 2), ’application u — ‘uu de ¥ dans
GI(E) a pour image une sous-variété X a la fois de GI(E) et de P’espace
vectoriel Ends(E) des endomorphismes symeétriques de E. L’espace tangent
a X en l’identité est le sous-espace vectoriel 7 de End*(E) cherché. Dans
les applications, ¢ est stable par transposition, et X est alors une sous-variété
du groupe ¢ lui-méme.

Des exemples sont examinés au §2, concernant notamment les G-réseaux
au sens de [B-M2] (exemple qui contient le cas usuel de tous les réseaux
de E), les réseaux dual-extrémes au sens de [B-M1], et les réseaux isoduaux
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(notion introduite par Conway et Sloane dans 1’appendice de [B-S], voir
aussi [C-S3]).

La caractérisation des réseaux strictement extrémes est I’objet des §§3 et 4.

Le §5 est consacré a une classification des réseaux de la famille . selon
la configuration de leurs vecteurs minimaux. On en déduit la finitude du
nombre de réseaux extrémes (modulo similitudes) dans le cas des G-réseaux
(résultat obtenu antérieurement par Jaquet dans [Ja]) et dans celui des
réseaux isoduaux.

Les réseaux isoduaux sont I’objet des §§6 a 8. On étudie plus particulie-
rement au §7 les notions de réseaux isoduaux symplectiques et orthogonaux
(la premiére notion est celle de [C-S2]), et I'on classe au §8 jusqu’a la
dimension 4 les réseaux symplectiques qui sont extrémes en tant que réseaux
isoduaux. La méthode utilisée repose sur ’introduction au § 6 de la notion plus
générale de réseau normal (cf. déf. 6.5).

Les auteurs remercient Christophe Bavard pour ses remarques.

2. EXEMPLES

Soit ¥ un sous-groupe fermé de GI(E) et soit L, un réseau de E. La
constante d’Hermite prend les mémes valeurs sur les images de L, par ¢
et par le groupe R* ¢ engendré par ¥ et les homothéties positives. Si ¥
contient les homothéties positives, soit "’ son sous-groupe formé des éléments
de déterminant + 1. Alors, on a ¥ = R* &, et ce produit est direct, si
bien que ¥ est connexe si et seulement si ¥ I’est. Pour I’étude de I’inva-
riant d’Hermite, il est indifférent de considérer ¥ ou ¥, et ce dernier choix
permet de se restreindre aux réseaux de déterminant 1.

L’une des formes du théoreme de compacité de Mahler est 1’assertion
suivante: une famille de réseaux de déterminants bornés et de normes minorées
par une constante strictement positive est d’adhérence compacte. Soit .# une
famille de réseaux de la forme ¥L, pour un groupe comme ci-dessus et
soit ¥ = sup, e+ Y(L). Soit L, une suite de réseaux de .# sur laquelle
Y(L,) tend vers y. Si & est de déterminant 1, le théoréme de compacité de
Mahler s’applique a la suite L,, dont on peut extraire une sous-suite
convergente dans .7, et le cas d’un groupe contenant les homothéties positives
se ramene au précédent. Si la famille .% est fermée dans #, ce qui est le cas
dans les exemples ci-dessous, puisque ¥ est fermé dans GI(E), la borne Y

est alors atteinte sur . et I’existence de réseaux critiques pour .7 est
assurée.
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Dans de nombreux exemples, le groupe ¥ est I’ensemble des éléments u
d’une sous-algebre A de End(F) munie d’une involution v d’une algébre
d’endomorphismes qui vérifient 1’égalité wu' = 1. Dans ce cas, l’espace
tangent 7 (<) en I’élément neutre du groupe ¢ est donné par la formule

7(Z)y={ved|v =~}

(Bourbaki, Lie III, p. 145, prop. 37). La détermination de 1’espace % se
fait ensuite en observant que 7 est ’image de 7 (%) par ’application
v Y+ 0.

2.1. EXEMPLE. L’ESPACE DES RESEAUX DE E. Ici, la famille .7
est I’ensemble 7 de tous les réseaux de E. On prend ¥ = Gl+(E) et
7z = Ends(E). Voronoi a montré que les réseaux extrémes sont les réseaux
parfaits et eutactiques, qu’ils sont strictement extrémes, et que le nombre
de classes de similitude de réseaux parfaits est fini. De plus, Korkine et
Zolotareff ([K-Z]) ont montré que les réseaux parfaits sont rationnels (i.e. pro-
portionnels & des réseaux entiers). Les questions soulevées dans 1’introduction
sont donc toutes résolues dans ce cas. En outre, Voronoi a donné un algorithme
permettant de trouver tous les réseaux parfaits a partir de ’un d’entre eux.

2.2. EXEMPLE. L’ESPACE DES G-RESEAUX. On se donne un sous-
groupe fini G du groupe orthogonal O(E), et ’on considére la famille %,
des réseaux stables par G. On peut prendre pour % le commutant de G
dans G1(£) (ou sa composante connexe neutre). L’espace 7 est le commutant
de G dans Ends(F). La caractérisation des réseaux «G-extrémes» comme
réseaux 7 -parfaits et 7 -eutactiques est démontrée dans [B-M2] (th. 2.10),
mais la démonstration de la finitude des classes de similitude de réseaux
G-parfaits (prop. 3.12) est incorrecte. [Il n’est pas prouvé que les changements
de bases utilisés dans la démonstration de 3.12 puissent se faire par
des éléments de ¥.] Une démonstration correcte vient d’étre obtenue par
Jaquet ([Ja]). Une autre démonstration en est proposée a la fin du §6. Un
«algorithme de Voronoi» est expos¢ dans [B-M-S]. Les composantes connexes
du graphe de Voronoi sont en bijection avec les classes de représentations
intégrales de G ([B-M-S], th. 2.9).

2.3. EXEMPLE. LES RESEAUX DUAL-EXTREMES. Il s’agit d’une notion
introduite dans [B-M1]. On définit un «invariant d’Hermite dual» vy’ par
v'(L) = (NL)NL*)V2(L* = {x e E|Vy e E,x.y € Z} est le réseau dual
de L). On a la relation de moyenne v'(L) = (y(L)y(L*))!/2 et I’égalité vy’ (L)
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= v'(L*). On dit qu’un réseau est dual-extréme §’il réalise un maximum
local de y’. Considérons alors dans l’espace E X E de dimension 2n la
famille .% des sommes orthogonales L L L* dans lesquelles L parcourt
’ensemble # de tous les réseaux de E. Soit ¢ le sous-groupe de GI(E X E)
formé des couples (u, ‘u~"'), u € G1+(E). Les réseaux de la forme L 1 L*
constituent une unique orbite sous l’action de ¥. On a det(L L L*) =1
et donc y(L L L*) = min[N(L), N(L*)].

Supposons que 1’on ait N(L) # N(L*), par exemple N(L) < N(L*) pour
fixer les idées, et considérons les homothéties de rapport A croissant de 1
a (N(L)/N(L*)'2. Ces homothéties font croitre strictement I’invariant
d’Hermite. Donc, les maxima locaux de y(L L L*) sont atteints sur le
fermé d’équation N(L) = N(L*). Mais, sur cet ensemble, on a I’égalité
v'(L) = y(L L L*). Les maxima locaux de l’invariant y’ sur les réseaux
de E s’interprétent donc comme maxima locaux de I’invariant y sur une sous-
famille de réseaux de £ X E.

L’espace @ est le sous-ensemble de End®(E) X Ends(E) forme des
couples (v, —v). On vérifie facilement que les notions de dual-perfection
et de dual-eutaxie ([B-M1], déf. 3.10, p. 24) coincident avec celles de
@ -perfection et de @-eutaxie. La finitude de I’ensemble des classes de
similitude de réseaux dual-extrémes vient d’€tre démontrée par le premier
auteur ([Ber]). La dual-perfection n’assure pas cette finitude (il existe des
familles a 1 parametre de réseaux dual-parfaits). On remédie a cet inconvénient
en ¢élargissant cette famille par homothétie, ce qui revient a remplacer & par
© + RId.

On ne connait pas d’adaptation de I’algorithme de Voronoi a cette
situation.

2.4. EXEMPLE. LES RESEAUX ISODUAUX. Certains réseaux célébres
(A,, Dy, Eg, réseaux de Coxeter-Todd, de Barnes-Wall, de Leech, diverses
variantes du réseau de Quebbemann) sont semblables a leur dual, ce qui
entraine que les invariants y et v’ prennent la méme valeur sur ces réseaux.
La normalisation N(L) = N(L*) déja utilisée dans I’exemple 2.3 permet de se
restreindre au cas des réseaux isométriques a leur dual; ce sont les réseaux
isoduaux, notion introduite par Conway et Sloane dans [C-S2]. Nous devons
préciser cette définition: étant donné un élément ¢ € O(E), on dit qu’un
reseau L est c-isodual si 'on a L* = o(L), cf. §§6-8. Alors, I’ensemble

des réseaux c-isoduaux (s’il n’est pas vide) constitue une orbite sous 1’action
d’un sous-groupe de Lie de GI(E).
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3. PERFECTION ET EUTAXIE

Le but de ce § est d’étendre au sous-espace @ les notions classiques de
Voronoi, qui correspondent au cas ou @ est I’espace End*(F) tout entier.
Pour tout x € E, on note ¢, la forme linéaire sur End*(£) définie par

0x(v) = v(x).x.

3.1. DEFINITIONS. Soit % un sous-espace vectoriel de Ends(E) et
soit S un ensemble fini de vecteurs non nuls de E.

(1) S est @-parfait si les restrictions a & des formes linéaires ¢, , x € S,
engendrent le dual @* de @, i.e. s’il n’existe pas dans © d’endo-
morphisme v non nul tel que ¢,(v) = 0 pour tout x € S;

(2) S est @-eutactique si la restriction a @ de la forme linéaire trace
(notée Tr) est combinaison linéaire a coefficients strictement positifs
des restrictions a @ des ¢,,x € S.

On emploie la méme terminologie pour un réseau en prenant pour ensemble
S I’ensemble de ses vecteurs minimaux.

On remarque que, si S est parfait ou eutactique pour @, il I’est éga-
lement pour tout sous-espace vectoriel ©’ de ©.

De méme, il est clair que tout ensemble fini de vecteurs de E contenant
un ensemble @ -parfait est & -parfait.

On peut montrer que la propriété «@-eutactique et @-parfait» se
transmet également; cela résulte par exemple de la caractérisation suivante:

3.2. PROPOSITION. Soit @ wun sous-espace vectoriel de E, et soit S
un ensemble fini de vecteurs non nuls de E. Alors, les conditions suivantes
sont équivalentes:

(1) S esta la fois ©-parfait et ©-eutactique,
2) v=0 est l'unique solution dans © du systeme d’inéquations
linéaires
Q,(V) =20 pourtour xeS et Tr()<O0.

Démonstration. Supposons d’abord que S vérifie (1) et soit v € © tel que

@0,(v) 20 pourtout xeS et Tr(v) <O0.

Dans la relation de @-eutaxie appliquée a v

Tr(v) = ), p<0x(v), px> 0 pour tout x,

xesS
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le premier membre est donc < 0 et le second > 0, ils sont donc nuls, et
puisque tous les p, @, (v) sont positifs ou nuls et les p, positifs strictement,
on obtient ¢, (v) = 0 pour tout x € S, donc v = 0 puisque S est & -parfait.
La condition (2) est donc vérifiée.

Réciproquement, supposons (2) vérifiée, et montrons que S est & -parfait.
Soit donc v € @ tel que @, (v) = 0 pour tout x € S; comme — v vérifie cette
méme hypothese, on peut, quitte a changer v en — v, supposer Tr(v) < 0.
Par (2), v est donc nul.

Pour montrer la @ -eutaxie, ce qui achévera la preuve de la proposition,
on utilise le théoréme de programmation linéaire dii a Stiemke et exhumé
par Barnes ([St]):

3.3. THEOREME (STIEMKE). Soit V un espace vectoriel réel de
dimenson finie, et soient F,,F,,---,F,, des formes linéaires sur V.
Les propriétés suivantes sont équivalentes:

(@) Toute solution v eV du systeme d’inéguations
Fw)=20,i=1,2, - m,
est solution du systeme d’équations
Fiw)=0,i=1,2,....,m.

(b) 1l existe des nombres réels p,,p,, ", pm Strictement positifs tels
que pFy+ pyFy+ o0 + p,F, = 0.

Appliquons ce résultat & V' = 7, et aux restrictions 4 & des formes — Tr
et ¢,,x € §. La condition (b) ci-dessus est exactement la #-eutaxie de S ;
quant a (a), elle est certainement vérifiée, puisque (2) dit que toute solution
v € V du systéme d’inéquations est nulle. [

Dans le cas ou # contient I’identité Id, on peut le remplacer par ’hyper-
plan 7, C Z, orthogonal & I’identité pour le produit scalaire (v, v’)
= Tr(vv"),

Zo={ve & |Tr(v) =0} .

3.4. PROPOSITION. Soit @ un sous-espace de Ends(E) contenant
Pidentité, soit 7, [I’hyperplan de & formé des endomorphismes de trace
nulle, et soit S ={xy, -,x;} un ensemble fini de vecteurs unitaires

de E. On note @' la restriction @ % de la forme linéaire ¢, , et 0
sa restriction a . Alors:

(1) 7 -eutaxie et 7 -eutaxie sont équivalentes.
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(2) Pour que S soit ©-parfait, il faut et il suffit qu’il soit © ,-parfait
et que les restrictions ¢, a @, vérifient une relation
Y 0;0,=0, avec Y a;#0.
1<igs i

(3) S est U-parfait et @-eutactique si et seulement s’il est @ y-parfait
et ©y-eutactique.

Démonstration. (1) Supposons que S vérifie une relation Zip,-(pf) =0,
pi >0, de Do-cutaxie. Alors il vérifie la relation de Z-eutaxie ¥, 35 ¢'

= Tr. En effet, soit v € @ et soit vy = v — %Tr(u) Id sa projection ortho-
gonale sur @,. On a Y .p;0'(vy) = 0, c’est-a-dire

L.p:01(0) = H2 Tr(v) @i (Id) = L2 Tr(v) .
La réciproque est triviale.

(2) Si S est @-parfait, il est trivialement @ ,-parfait; de plus, la
restriction Tr a @ de la forme trace s’écrit sur les ¢@¢ (qui par hypothése
engendrent ©%*):Tr = ¥ .a;0’, relation qui, appliquée a Id, donne
n= Y, 0;, et, par restriction a Z,,0= Y .0,;0§.

Réciproquement, supposons qu’il existe une relation Y, cics@ i(pf) =0,
avec ) .o;# 0; soit v = vy + %Tr(v)ld, Vo € Oy, un élément de & tel
que ¢’(v) = 0 pour tout i. On a donc @j(vy) + > Tr(v) = 0 pour tout i,
d’ot Pon déduit ¥,0;0f(ve) + ZX Tr(v) =0, ol Y.a,;05(w) =0 et
Y .o; # 0. Donc Tr(v) = 0, et v = v, appartient & ©,. Si S est ©,-parfait,
on déduit alors de la relation ¢‘(v) = 0 pour tout i que v est nul. Ainsi, S est
O -parfait.

(3) se déduit immédiatement de (1) et (2), puisque toute relation de
Z,-eutaxie ¥, p;@q =0, p; > 0 est telle que Y p; #0. [J

Au produit scalaire (v, w) = Tr(vw) dans I’espace End*(F) est associée
une identification de Ends(F) a son dual, transformant v € End*(£) en
¢@: wr (v, w). Cette dualité associe a I’application identique la forme linéaire
trace, et, pour x # 0 € E, a la projection orthogonale p, de £ sur Rx la
forme linéaire ,—V—z—)}—) Q.

La dualité du sous-espace vectoriel @ sur son dual @ * induite par I’iden-
tification précédente est

projz (v) < restrz () ,

ou projz et restrz désignent respectivement la projection orthogonale sur @
et la restriction a &, comme on le voit en remarquant que, pour w € @,

o (w) = v, w) = {projz(v), w).
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C’est ainsi que ’ensemble fini S est @-parfait (resp. @-eutactique) si et
seulement si les projz(py), x € S, engendrent & (resp. s’il existe des
coefficients p, tous strictement positifs tels que projz (Id) = ¥, p.xprojz(px))-

4. EXTREMALITE DANS %

Pour faire une étude locale de la fonction d’Hermite dans la famille .7 ,
on établit quelques résultats préliminaires relatifs a 1’espace End* (&) des
endomorphismes symétriques de E, dont on note || . || une norme.

On rappelle que ’on note exp ’application exponentielle de End (£) dans
GI(E); par restriction, elle induit un difféomorphisme de Endf$(E) sur
I’ensemble des automorphismes symétriques positifs de E.

Les deux énoncés suivants concernent le déterminant et la norme d’un
réseau. Le premier, qui se démontre par un calcul de valeurs propres, est
bien connu:

4.1. LEMME. Pour tout v € Ends(E), on a det(expv) = eTr®,

4.2. LEMME.
(i) Soit ue GI(E) etsoit xe E.Ona N(u(x)) = N(x) + ¢, ('uu — 1d).
(1) Pour tout v e End*(E), pour tout xe€ E, on a ¢,(exp(v)—1d)

= 0, (v), [’égalité ayant lieu si et seulement si v(x) = 0 (et alors les
deux membres sont nuls).

(iii) Soit S un ensemble fini de vecteurs non nuls de E et soit F
un cone fermé de End*(E) tel que, pour tout v # 0 appartenant
a F, le minimum min,.s¢,(v) soit négatif. Alors, il existe
o >0 tel que, pour tout veF avec 0<]||v||<a, on ait
min, . s ¢, (exp (v) — Id) < 0.

(iv) Soit L un réseau et soit S [’ensemble de ses vecteurs mini-
maux. Pour u e GUE) assez voisin de I’identité, on a N(u(L))
= N(L) + min, ¢ s 0, (‘uu — 1d).

Démonstration. (i) On a
u(x) . u(x) —x.x="uu(x).x —x.x=('uu—Id) (x).x = ¢, (‘uu — Id) .

On prouve (11) et (iii) par un argument de convexité. On note ¥ la sphere
unité de End*(E). Pour tout w € £, pour tout x € E, on remarque que la
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fonction numérique f,: ¢+ f,(f) = ¢, (exp(tw) — Id) est convexe, et que
Sw(©0) =0, f,0) = 0.(w).

En effet, en notant A; les valeurs propres de w et (g;) une base orthonor-
male de E formée de vecteurs propres de w, on a, en posant x = ),.&;¢€;,
fw@) = YEX(e™—1), d’ou les dérivées f/(f) = L E he™ et f1(F)
= Y E2A2e™ > 0, avec égalité si et seulement si w(x) = 0.

.. . v .
(ii) Soient x € Eet v # 0. On pose ||v|| =t et w = - € . La convexité
4

de la fonction f,, précédente montre que @, (expv — Id) = ¢, (exp (tw) — 1d)
=10, (w) = 0,(v), I’égalité exigeant w(x) = v(x) = 0.

(iii) Soit w € FF'n X. Par hypothése, il existe x € S tel que ¢,(w) soit
< 0. La convexité de la fonction f, correspondante montre qu’il existe
t, > 0 tel que f, (¢) soit négative pour tout 7 €]0, ¢,,[. Il en est donc de
méme de M, (¢) = min, (¢, (exp(tw) — 1d)), et, plus précisément, si M, est
négative en un point #,, elle ’est sur tout ’intervalle ]0, #,[.

La fonction w'— M, (¢,) étant continue sur F n %, il existe un voisi-
nage ouvert V(w) de w dans Fn X tel que, pour w' € V(w), M,  soit
négatif en 7,, et donc aussi sur l’intervalle ]0,¢,]. Du recouvrement
Uwernz V(W) du compact Fn X, on extrait un recouvrement fini
Ui<i<rV(w;), et on pose o = min(¢,, - ¢, ). Soit alors v € F tel que
0<|lv]| < a etsoit w= ”—inue Y. Il existe i,1 < i< r, tel que w appar-
tienne a V(w;) et donc M, (f) est < O sur l’intervalle ]0, a[C]O, 7,,.].

(iv) Pour u suffisamment voisin de Id (modulo le groupe orthogonal), les
vecteurs minimaux du réseau u (L) proviennent de vecteurs minimaux de S, de
sorte que N(u (L)) = min, sN(u(x)), d’ou le résultat grace a (i). [

4.3. LEMME. Soit L un réseau, et soit u € GI(E) tel que u(L)
soit semblable a L. Alors, si u est assez voisin de l’identité, u Ilui-méme
est une similitude.

Démonstration. Le rapport de similitude A, des deux réseaux est tel que
A2 = %%)) = (det u)2, et tend donc vers 1 quand u tend vers I’identité.
Quitte a remplacer u par A, 'u, on peut donc supposer les réseaux iso-
métriques. Il existe alors une isométrie f avec (fu)(L) = L. Donc, fu
appartient au sous-groupe discret GIl(L) de GI(E), et ‘uu = '(fu) (fu)
appartient a I’ensemble discret des ‘vv, v € G1(L). Pour u assez voisin de

’identité, on a donc ‘uu = Id, ce qui signifie que u est une isométrie. L]
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Soit .# une famille de réseaux vérifiant les hypothéses et notations de
I’introduction: il existe un sous-groupe fermé ¢ de GI(E) tel que les compo-
santes connexes de .¥ sont des orbites de la composante connexe neutre & °
de <. On suppose que ¥ est stable par transposition. L’espace tangent en
I’identité a la variété des ‘wu, u € <, est noté @. On suppose de plus que la
famille .7 est stable par homothéties, ou bien constituée de réseaux de méme
déterminant.

La proposition suivante permet si besoin est de ne considérer que des
automorphismes symétriques de ¥ :

4.4. PROPOSITION. Soit ue ¥° etsoient f et s sescomposantes
orthogonale et symétrique. (On a u = fs et s est défini positif.) Alors,
f et s appartiennent aussi a < °.

Démonstration. Comme ‘uu est défini positif, il existe v € Ends(F)
tel que ‘uu = expv. Comme ¥ est stable par transposition, v est dans
I’espace tangent & ¢ (et en fait dans ). Alors, ¢ = exp% est un endo-
morphisme symétrique positif appartenant a <°, et ’on a #2 = ‘yu, donc
t = 5. Ainsi, s, et par suite f, sont dans ¥ °.

Nous sommes maintenant en mesure de démontrer un théoréme a la
Voronoi.

On rappelle qu’un réseau L € .7 est dit strictement extréme s’il existe un
voisinage % de L dans .% dans lequel tout réseau L’ non semblable d L vérifie
I’inégalité stricte y(L") < y(L).

4.5. THEOREME. Soient .7,% et & comme ci-dessus. Soit L un

réseau appartenant @ % et soit S [’ensemble de ses vecteurs minimaux.
Alors:

(1) L est strictement extréme dans .7 si et seulement s’il est & -parfait
et -eutactique.

(1) Si L est extréme mais non strictement extréme, il existe dans % un
arc d’origine L, formé de réseaux extrémes deux & deux non
semblables, de méme invariant d’Hermite que L et qui, a ’exception
de L, ont tous méme ensemble de vecteurs minimaux engendrant un
sous-espace Sstrict de E.

Démonstration. Pour étudier 'invariant d’Hermite au voisinage de L,
on peut remplacer .7 par la famille normalisée .7, = {L' € .7 | det(L")
= det(L)}, et donc, d’aprés 4.1, 1’espace & par Oo={ve ?|Tr@) = 0}.
L’invariant d’Hermite est alors proportionnel a la norme des réseaux.
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Supposons d’abord que S soit &-parfait et Z-eutactique. D’aprés le
critere 3.2., on a donc, pour tout élément v # 0 de @, min, 50, (V) <0
(puisque Tr(v) = 0). D’aprés le lemme 4.2, (iii)) (appliqué a S et au cOne
F = ©,), il existe a >0 tel que, pour ve &, avec 0<||v||<a, on
ait min, . 5@, (exp(%v) — Id) < 0. De méme, il existe B >0 tel que,
pour |[v|| < B, N((exp(50) @)) — N(L) = min, 5 (exp (30) — 1d) (4.2,(v).
Soit € = min(a, ). Pour tout réseau L’ appartenant au voisinage
U = {exp(%u) (L),ve @y,0<]||v||]<e} de L dans .%,, on a N(L')
- NL)<0, i.e. y(L)<vy(L): dans %, y(L) est un maximum strict:
L est strictement extréme.

Supposons inversement que L € .¥ réalise un maximum de la fonction
d’Hermite dans un voisinage % de L dans .7, que ’on suppose assez petit
pour que les vecteurs minimaux des réseaux qu’il contient proviennent de ceux
de L, et soit v € 7, tel que
(4.6) min (@, (v)) = 0.

xesS

Pour ¢ > 0, on considére

t
4.7) U, = exp (5 U) e+ et L,=u,l)e %,.

On suppose ? assez petit pour que L, appartienne a %, et pour que u, vérifie
la condition du lemme 4.3. Puisque Tr(v) = 0, on a detu, = 1 (cf. 4.1), et
donc det(L,) = det (L), et pour ¢ assez petit (lemme 4.2,(iv) et (iii)), la
condition (4.6) entraine

det(L)V"(y(L,) —v(L)) = N(L,) — N(L)
= min (@, (exp(tv) — Id)) > tmin @, (v) > 0.

xes xeS
Le caractére maximal de y (L) dans % implique que les inégalités ci-dessus sont
des égalités, et donc que y(L,) = y(L). De plus, les vecteurs minimaux de L,
sont les vecteurs u,(x), avec x € S tel que ¢, (exp(tv) — Id)) = t¢,(v) = 0,
c’est-a-dire, d’apres 4.2, (ii), v(x) = 0 donc u,(x) = x. On a donc

(4.8) S(L,) = S N Ker(v) .

Si P’on suppose vy (L) strictement maximal dans %, la relation
v(L,) = v(L) exige que L, soit semblable a L, et donc (lemme 4.3) que u, soit
une isométrie (rappelons que det (u,) = 1), c’est-a-dire que v soit nul. Ainsi,
sous cette hypothése, la condition (4.6) implique v = 0: L est alors
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7 ,-parfait et @ ,-eutactique, ce qui achéve de prouver (i), compte tenu
de 3.4.

Sinon, d’aprés ’étude de la partie directe, S n’est pas a la fois @ (-parfait
et @ ,-eutactique, et il existe bien dans %, un élément v # 0 vérifiant les
conditions (4.6). Les réseaux L, construits a partir de v sont alors deux a deux
non semblables, et vérifient les propriétés énoncées dans Gi). O

49  COROLLAIRE. Si un réseau L est strictement exiréme pour un
groupe ¢, le nombre s de couples +x de ses vecteurs minimaux
vérifie

s > dim(¥¢),

et méme, dans le cas o & est formé d’éléments de déterminant *1,

s>dim(¥) + 1.

Démonstration. La @ -perfection de I’ensemble S des vecteurs minimaux
implique s > dim(Z) = dim(¥); si de plus & est formé d’éléments de
déterminant + 1, & est contenu dans le noyau de la trace, de sorte que
la relation de #-eutaxie se traduit par une relation non triviale entre les
®., x € S(L), et ’on a donc s > dim({ ®,, x e S(L)Y) + 1. [

[Remarquons que dans ce cas, L est aussi strictement extréme pour le
groupe ¢’ = R*¥ de dimension dim(¥¢) + 1.]

Sans hypothése particuliere sur ¢, il peut exister des réseaux extrémes
qui ne le sont pas strictement. L’exemple suivant correspond a la famille
isoduale réductible de dimension 3 considérée dans [C-S3].

Soit ¢ une rotation de R3 d’angle n/2 et d’axe une droite D dont on
note P le plan orthogonal, et soit L un réseau o- isodual. Il est en parti-
culier stable par 62, ce qui entraine que L contient avec ’indice 1 ou 2 la
somme orthogonale L n D L L n P. On constate que ’indice 2 est impossible
pour les réseaux c-isoduaux, et que 'on a L n D = Z (et det(L n P) = 1).
On a donc y(L) = N(L) <1, et les réseaux c-extrémes sont ceux pour
lesquels L N P est de norme > 1. Ils constituent modulo isométries une
variété a bord de dimension 2. Aucun d’entre eux n’est strictement extréme,
et leurs vecteurs minimaux peuvent se limiter & ceux de D.
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5. RESULTATS DE CLASSIFICATION

On conserve les notations et hypothéses des paragraphes précédents. On
suppose en outre que ¢ est connexe.

On classe ci-dessous les réseaux selon la configuration de leurs vecteurs
minimaux, généralisant des notions introduites dans [Ber] et [B-M3] (et
auparavant de facon informelle dans [B-M1], §5).

5.1. DEFINITION. Soient L et L’ deux réseaux appartenant a la famille
7, et Set S’ leurs ensembles de vecteurs minimaux. On définit les relations
suivantes:

L' =L sl existe u € & tel que L' = u(L) et S" = u(S),

L'<L il existe u € & tel que L" = u(L) et S" C u(S).

La relation = est une relation d’équivalence dans .7, et la relation <<
induit un ordre (encore noté <) sur ’ensemble des classes de = -équivalence.

Le théoréme suivant montre en particulier que les classes au sens de la
déf. 5.1 contiennent au plus un réseau strictement @ -extréme.

5.2. THEOREME. Soit % une classe et soit L € ¥ un réseau
o -eutactique.

(1) L’invariant d’Hermite atteint sur L son minimum dans la
réunion ¢ des classes < Z.

2) Si S(L) engendre E, ou si L est ©-parfait, alors les réseaux
eutactiques de <% sont tous semblables a L.

[Si le nombre de classes est fini (comme c’est le cas dans les exemples
du §2), on obtient la finitude des réseaux strictement extrémes pour le
groupe ¢, et méme des réseaux @ -eutactiques possédant zn vecteurs minimaux
indépendants.]

Démonstration . On se raméne tout de suite au cas ou ¢ est de déter-
minant 1. Soit L' = u(L) € ., u € <, un réseau tel que S’ D u(S). On a
donc N(u(x)) = N(L’) pour tout x € S, c’est-a-dire (lemme 4.2, (i))

Qx(‘fuu —Id) = N(L") — N(L) pour tout xeS.
De plus, comme ¢ est connexe, il existe v € & (de trace évidemment

nulle) tel que ‘uu = exp(v). On a donc

(5.3) o, (exp(v) —1d) = N(L') — N(L) pour tout xeS.
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Posons, pour tout x € S,
WX(U) = (px(GXp(U) - Id) - (px(U) .

D’aprés le lemme 4.2,(ii), on a Iinégalité y,(v) > 0, avec égalit€ si et
seulement si v(x) = 0. Par 5.3, on a

(5.4) N(L") — NWL) = ¢,(v) + y,(v) pour tout xeS.

Puisque S est & -eutactique, il existe des coefficients p, > 0 tels que
Y csPx®x(v) = Tr(v) =0, d’ou l’on tire, par combinaison lin¢aire des
relations 5.4:

(5.5 ( L px) (NIL)=N@) =0+ T prya(®) 20,
et donc N(L') — N(L) >0, d’ou y(L') = vy(L), ce qui prouve (1).

Pour prouver (2), on suppose de plus que L’ est & -eutactique et dans la
classe ¢ (i.e., on a S(L") = u(S)). En échangeant les roles de L’ et de L,
on voit que 'on a N(L') — N(L) =0 (i.e., y(L") = y(L)), et donc (par 5.5)
v, (v) = 0 c’est-a-dire v(x) = 0 pour tout x € S. Donc, S est inclus dans
Ker v. Cela entraine que v est nul: c’est clair si S engendre E, et, si L’ est
7 -parfait, cela résulte des égalités ¢, (v) = 0 pour tout x € S. On en déduit
que ’on a ‘uu = Id, donc que u est une isométrie. [

5.6. COROLLAIRE. Un réseau strictement ©-extréme est isolé (modulo
similitude) dans sa classe €, en particulier, lorsqu’il s’agit d’un maximum
absolu (strict), ce réseau est unique modulo similitude dans la réunion
7 des classes qui contiennent <.

En effet, il réalise a la fois par définition méme un maximum relatif
(ou absolu) de y dans .#, donc aussi dans ¥, et d’aprés 5.2 un minimum
absolu de y dans ¥.

[Une traduction du corollaire ci-dessus est qu’un tel réseau perd des
vecteurs minimaux par toute déformation suffisamment petite.]

6. ISODUALITE

Soit L un réseau de E, et soit L* son dual. Si 6 € O(E) est une isométrie
du réseau L sur son dual L* (on dit alors que L est c-isodual), 1’égalité
‘c = o~ ! montre que ¢ applique L* sur L, de sorte que 6?2 est un automor-
phisme du réseau L. On peut préciser ce résultat en introduisant le groupe
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Aut# (L) des transformations orthogonales appliquant L sur L ou L*; ce
groupe contient le groupe Aut(L) (= Aut(L*)) avec I’indice 1 ou 2, l’indice
étant égal a 2 lorsque le réseau est isodual sans étre unimodulaire. Dans ce cas,
les 1sométries de L sur son dual sont de la forme © = ¢ © u, ¢ désignant
I’une d’entre elles, et u parcourant le groupe d’automorphismes de L.

Un réseau c-isodual est également ¢’-isodual pour 6’ = + 6,6’ = 67!
et 6’ = + o pour tout entier m impair. Il en résulte que, si I’isométrie ¢ est
d’ordre 2%m, avec m impair, ¢ est encore une isométrie de L sur L*, dont
P’ordre est cette fois une puissance de 2; les isométries d’ordre une puissance
de 2 présentent de ce fait un intérét particulier.

Soit ¢ € Z(E) et soit .7, la famille des réseaux c-isoduaux.

6.1. PROPOSITION. Soit G, le sous-groupe de GIl(E) défini par
Gy = {u € GI(E) | 'ucu = o} .

(1) La composante connexe d’un réseau L € .7, est contenue dans
[’orbite de L sous ’action de G,.

(2) Le groupe G, est stable par transposition.

(3) G, est le groupe orthogonal de la forme bilinéaire
bs:(x,y)>x.0y.
(4) L’espace 7~ associé a #, est
7 ={v e End*(E) | ov = —vc} C KerTr .

Démonstration. (1) Soient L € ¥, et u € GI(E). On a les équivalences
suivantes:

u(l)y e 75 & (u@)* = o(u)) & '‘u='(L* = c(ul))
s 'u-(c)=0c(u)) & c '"ucu € GI(L) ,

d’ou P’on déduit, lorsque wu est suffisamment proche de I’identité,
c Muocu = Id.

(2) La transformation ¢ <€tant orthogonale, on a les équivalences
ueGs, ¢ 'u'lteGs, ¢ 'ue Gs.

(3) Cela résulte de I’équivalence, pour u € GI(E), x € E, y € E,
u(x).cu(y)=x.0(y) @ x.'ucu(y) =x.0y.

(4) On utilise la proposition de Bourbaki citée au début du §2, avec pour
involution ’application ¥ = u' = c‘uc~!. On a en effet (#')' = c%uc -2,
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et u commute & o2 (les réseaux o-isoduaux sont des G-réseaux au sens
de ’exemple 2.2 pour le groupe G engendré par c2). L[]

Etant donnés un sous-groupe fini G#* de O(EF) et un sous-groupe G
d’indice 2 de G#, on pourrait plus généralement énoncer la proposition 6.1
pour des réseaux (G#, G)-isoduaux, c’est-a-dire stables par G et échangés
avec leur dual par G#\G. L’espace & est alors défini de facon analogue,
par la formule cv = @(c)vo, ou ¢: G* — { + 1} est le caractére de noyau G.
La projection sur @ est donnée par la formule (cf. [B-M2], p. 45 dans le
cas des G-réseaux):

projz(v) =

6.2. PROPOSITION. S’i/ existe un réseau c-isodual, la forme bilinéaire
b, est de déterminant =+ 1, égal au déterminant de o.

Démonstration. D’une facon générale, soient ¢ € GI(E), b, la forme
bilinéaire associée comme ci-dessus a o, et 4 = (e;, *--, e,) une base de E
et #* sa base duale. On a

det 4 b, = det 3* o (H) = det » 6(A) det y+ # = det(c)det(Gram (%)) .

Soit alors L un réseau c-isodual et % une base L. On a alors det (Gram (%))
= det(L) = 1, donc det(b,) = det(s). LI

Il est immédiat que la forme b, est symétrique (resp. alternée) si et
seulement si I’on a 62 = + Id (resp. 62 = — Id), et que, dans le premier cas,

si +1 (resp. — 1) est valeur propre d’ordre p (resp. g) de o, b, est alors
de signature (p, q).

6.3. DEFINITION. Nous dirons que L est orthogonal (resp. symplec-
tique) s’il possede une isométrie o sur son dual pour laquelle b, est
symétrique (resp. alternée).

[Cette notion de réseau symplectique coincide avec celle de [B-S] et de son
appendice.]

Dans la suite, nous considérons essentiellement des réseaux isoduaux
orthogonaux ou symplectiques. Notons que tout réseau unimodulaire est
trivialement orthogonal pour les automorphismes =+ Id.

Revenant au cas général, on remarque que, sur un réseau G-isodual L,
la forme b, ne prend que des valeurs entiéres. Précisons ses valeurs sur
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I’ensemble S (L) des vecteurs minimaux de L : soient x et y € S(L) des vecteurs
minimaux de L; on a|x.6(»)| < N(x) = N(L) < v,, et donc pour n < 7
oun=28etL #+FEs, bs(x,y) est égal a 0 ou =+ 1.

Il en résulte qu’un tel réseau, si ses vecteurs minimaux engendrent E et
s’il posséde un vecteur minimal x appartenant également a son dual, est
isométrique a Z1.". En effet, soit L’ un sous-réseau de L ayant une base
(ey, ey, ...,e,) formée de n vecteurs minimaux de L. On a N(x) = 1, donc
N(L") = N(L) = 1, ce qui entraine les inégalités

1 = det(L) < det(L’) < N(e,)N(ey) ... N(e,) = N(L)" = 1 .

La derni¢re inégalité est I’inégalité de Hadamard, qui est en fait une
¢galité, ce qui entraine que les vecteurs e;,e,, ..., e, sont deux a deux
orthogonaux.

6.4. EXEMPLES

(1) Tout réseau plan convenablement normalisé est appliqué sur son dual
par les rotations + ¢ d’ordre 4, donc est symplectique, cf. [C-S2, appendice
de B-S].

(2) On trouve dans [B-M1], §5 la description d’une famille de réseaux L,
de dimension 4 ayant 9 vecteurs minimaux (la classe ay) dépendant d’un
parametre modulo similitude, que 1’on peut représenter dans une base
(ei,e,,e;,es) convenable par les matrices de Gram

2 —1 — ] t
-1 2 1-¢ -1
-1 1-¢ 2 -1
t —1 -1 2

A[:

pour %<t< 1. Ce sont, comme le réseau hexagonal A,, des réseaux
sur ’anneau des entiers d’Eisenstein Z[w], ®? + o + 1 = 0 et qui deviennent
isoduaux par renormalisation, comme on le voit en vérifiant que I’application
c:(e,es,e3,e4) > (—ef,e¥,ef, —e¥) est une similitude de L, sur L¥.
Le groupe Aut#(L,) est d’ordre 144 sur l’intervalle ]é, 1 [ , et d’ordre 288
(resp. 2304) pour ¢ = % (resp. t = 1), correspondant a un réseau semblable
a Li = A, o (resp. a D,). Ces réseaux sont symplectiques et non orthogonaux
sauf Lﬁ et Dy pour lesquels le groupe Aut#(L,) contient des isodualités

d’ordre 2 de signatures arbitraires.

Pour ¢ croissant de % a 1, Pinvariant d’Hermite du réseau L,, égal a
2[(t+ 1) 2 — t)] /2, croit strictement de ;—1 avy,=12.
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(3) Dans R",n > 8 pair muni de sa base canonique (81,82, ...y €,), ON
pose 8—2(81+82+ c+€,) ets—— —g,+&,+ " +€,), e lon
considere les réseaux D, , définis dans Z” par la congruence ) X; = 0 mod 2,
et D' =D,u(e+D,). Le groupe d’automorphismes Aut(D,) de D,
s’identifie au produit semi-direct (£ 1)” X &,, celui de D' au groupe de
Weyl du précédent (les automorphismes (g;) = (£ ¢€;) de déterminant impair
échangent € et ¢ modulo D,). Pour n = 2 mod 4 (resp. n = 0 mod 4), on
a D'*=D,u (g +D,) (resp. D/* =D,), et Aut#*(D;) s’identifie a
Aut(D,) pour n =2 mod 4 et est égal a Aut(D,’) sinon. Les isométries
de D} sur son dual sont les automorphismes de D, composés d’une per-
mutation et d’un nombre impair (resp. pair) de changements de signes
des €;. Les réseaux D sont symplectiques, et également orthogonaux avec
pour systémes de valeurs propres possibles les combinaisons & k = 2 mod 2
valeurs propres — 1.

(4) Soit p = 3 mod 4 prem1er Les réseaux A((p +1/4) de Craig ([C-S],
ch. 8, §6) sont de norme “>—, isoduaux de type symplecthue apres renorma-
lisation, eutactiques et con]ecturalement parfaits, cf. [B-B], §3.

(5) Watson ([Wa]) a déterminé les valeurs maximales de I’invariant s pour
les réseaux de dimension < 7 dépourvus de sections minimales de type A,.
Ce maximum est en particulier atteint sur un réseau unique (a isométrie pres)
entier pour le minimum 3, que nous notons Wa,. Ces réseaux s’obtiennent
comme sections de ﬂE ;“ . Le réseau Wag, défini par la matrice de Gram A
ci-dessous, est proportionnel a un réseau o-isodual pour une transfor-
mation ¢ de type symplectique. Cela se vérifie matriciellement par la formule
A=1'5(44A-1) S, ou S| représente une isométrie 6, dans le couple de bases
(4, #*) pour lequel on a Gram(#) = A

(3 -1 -1 -1 -1 1\
-1 3 -1 1 1 — 1
-1 -1 3 —1 1 -1

A= -1 1 =1 3 1 1
\—1 1 1 1 —1)

1 -1 -1 1 -1 3

0 0 0 0 0 —1\

0 0 0 1 0 1

S, = 0 1 -~ 1 0 0 0

I -1 0 0 0 1

0 0 -1 1 0 1

1 -1 0 -1 -1 o)
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Le fait que Wag soit symplectique se voit en contrdlant que S = (A4S, 13
est telle que S? = — 641d.

[Les principaux invariants de Was sont s(Wag) = 16, det(Wa4) = 64,
| Aut(Wae) | = 29.32.5. Signalons les similitudes Wag ~ D/, Was ~ A?
~ (P)* et Wa, ~ A¥]

Dans I’¢tude des relations entre un réseau et son dual, il y a deux norma-
lisations naturelles: celle qui donne aux deux réseaux le méme déterminant
(alors égal a 1, vu la formule det(L*) = det(L) ~!) et celle qui leur donne la
méme norme.

6.5. DEFINITION. Nous dirons qu’un réseau L est normal si ces deux
normalisations coincident. (II revient au méme de dire que les deux réseaux
ont méme invariant d’Hermite.)

Il est clair que tout réseau isodual est normal.

Soit L un réseau normal, de déterminant d et de norme m, et soient d*
et m* les invariants analogues de L*. (On a dd* = 1.) Lorsque I’on effectue
sur L une homothétie de rapport [/A, L* subit une homothétie de rap-
port inverse. On transforme alors d en D = A"d, m en M = \Am, d¥
en D* = A-"d* et m* en M* = A~ 'm*. L’égalité M* = M équivaut a

m*

A2 =— dou:
m

6.6. PROPOSITION. Pour qu’un réseau soit normal, il faut et il suffit
que ses invariants d, m, m* vérifient [’égalité

d? = (ﬁ)
m*

L’étude de la liste des réseaux parfaits jusqu’a la dimension 7 donnée dans
[C-S1] montre que les seuls réseaux parfaits de dimension < 7 qui sont nor-
maux sont (a similitude pres) P} ~ 7, Pé ~ A,, Pi ~ Dy et P‘z ~ Aé ~ Pg.
Il s’agit dans tous les cas de réseaux isoduaux. On vérifie de méme que, parmi
les réseaux de racines irréductibles, seuls Z, A,, D, et Eg sont normaux.

La proposition suivante, dont nous ne donnerons pas la démonstration,
précise la proposition 4.4 dans le cas du groupe G,:

6.7. PROPOSITION. Les éléments u de G, sont de la forme

u=fu,
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o [f est une isométrie qui commute avec G, el U Un automorphisme
symétrique positif dont les valeurs propres # 1 sont deux a deux inverses,
et dont les sous-espaces propres E, vérifient o(E;) = Ej-1.

Nous en venons aux résultats de finitude annoncés dans l’introduction:
on se borne aux réseaux isoduaux de densité minorée. Rappelons que si
I’ensemble S des vecteurs minimaux d’un réseau L engendre E, I’invariant
d’Hermite de L est > 1 (reprenant dans un contexte plus général les remarques
qui suivent la définition 6.3, on voit en effet que I'inégalit¢ de Hadamard
appliquée a un sous-réseau L’ convenable de L donne det(L) < det(L")
< N(ej)N(e3)...N(e,) = N(L)", soit y(L) = 1).

6.8. THEOREME. Les réseaux de 7, dont les vecteurs minimaux
engendrent E se répartissent en un nombre fini de classes au sens de la
définition 5.1.

En utilisant le théoréme 5.2, on en déduit (comparer avec [B-M3]):

6.9. COROLLAIRE. A similitude pres, il n’y a qu’un nombre fini de
réseaux 7 -eutactiques dont les vecteurs minimaux engendrent E.

Démonstration de 6.8. On sait depuis Hermite qu’il existe une constante
K, telle que tout réseau L de dimension n admet une base 4 avec
N(e;)...N(e,) < K,det(L), ce qui entraine que les composantes des
vecteurs minimaux dans cette base sont bornées (par 1/]7” , cf. [Ber],
lemme 2.7) et donc en nombre fini. On a ici det(L) =1 et N(L) > 1, donc
N(e;) < K, pour tout i. La matrice B, de la forme b, dans la base % est
donc bornée (on a |b,(e;,e;)|=]c(e;).e;| <)/N(e,)N(e;) < K,). Ces
matrices B, sont donc elles aussi en nombre fini. Soient alors L, et L, deux
réseaux de ., qui ont dans des bases convenables %, et 4, méme matrice
B, et mémes composantes de vecteurs minimaux. Soit u € G1(E) tel que
A, = u(#,). La deuxiéme condition signifie que S(L,) est égal a u(S(L,)).
Quant a la premicre, elle équivaut a u € O(b,) = G, (prop. 6.1,(3)). Ainsi,
L, et L, sont dans la méme o-classe. [

REMARQUE. La démonstration peut étre adaptée a la situation de
exemple 2.2, c’est-a-dire celle des réseaux stables par un sous-groupe fini G
donné de O(E), et dont les vecteurs minimaux engendrent 1’espace.

Il suffit pour cela de remplacer la matrice B, = (c(e;).e;) par les
matrices B, = (g(e;).e) g € G des automorphismes g € G dans la base %.
Puisque G opere sur le réseau de base #, ces matrices ont des coeffi-
cients entiers; ils sont de plus bornés, car les produits N(e?‘)N(ej) sont
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bornés: on a en effet N(e}) < 5% < wgg (voir [Ber], 2.7), et N(e ANE@)"!
< K,,zdet(L) par choix de la base «réduite» %, d’ou N(e/)N(e;) < K]’;C(lit)(f)
= T’i")—,, < K?. La démonstration s’achéve comme ci-dessus, en remarquant
que si les deux bases % et u(%#) de E fournissent la méme représentation
intégrale g— B, du groupe G, le changement de base u appartient au
commutant ¥ de G (comme on a g(u(e;)). (u(e))* = g(u(e))) . ‘u-"'(ef)
= (u-'gu)(e;).e’, la condition sur u s’écrit u-!'gu = g pour tout
geG). [

Les G-réseaux dont les vecteurs minimaux engendrent [’espace se répar-
tissent donc en un nombre fini de G-classes. C’est en particulier le cas des
réseaux G-parfaits ([B-M2], prop. 2.9). Comme de plus une G-classe contient
au plus un réseau G-parfait ([B-M2], prop. 2.9), on retrouve ainsi le résultat
de finitude de [Ja].

7. RESEAUX ISODUAUX ORTHOGONAUX ET SYMPLECTIQUES

On conserve les notations du § précédent. On note ¢ un élément de O(E).
On rappelle que b, désigne la forme bilinéaire entiere (x,y)— x.oy, et
qu’un réseau c-isodual est dit orthogonal (resp. symplectique) si b, est symé-
trique (resp. alternée). Il revient au méme de dire que o2 a pour carré + Id
(resp. — Id).

Le cas ou 6 = =+ Id est particulier: les réseaux c-isoduaux sont les réseaux
unimodulaires, et il est facile de vérifier que les composantes connexes de .7
sont les classes d’isométrie de réseaux unimodulaires (cf. ci-dessous). Tous sont
donc strictement c-extrémes. Sauf mention du contraire, nous supposons
c # * Id.

Nous allons tout d’abord examiner la structure de ’espace .#,. Pour ce
faire, nous rappelons deux résultats sur les formes bilinéaires entiéres de déter-
minant inversible. Le premier, dG a Milnor et Serre, est démontré dans [Se],
le second (beaucoup plus facile) dans [M-H].

Rappelons qu’un Z-module quadratique (sans torsion, de type fini) (M, b)
est dit pair si b(x, x) ne prend que des valeurs paires, et impair dans le cas
contraire. Etant donné un réseau M, on note M * (resp. M ~) le module qua-
dratique M muni de la forme bilinéaire (x, y) — x .y (resp. (x,y) = — x.y).
On note U le module quadratique (Z?, 2x,x,). Enfin, pour p, ¢ > 0 entiers,
pM + gN désigne la somme orthogonale de p copies de M et de g copies
de N.
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7.1. LEMME. Un Z-module quadratique indéfini impair (resp. pair) est
isométrigue a une somme pZ* + qZ~ (resp. pU + qE{ ou pU+ gEyg ).
Sa signature (r,s) est égale @ (p,q) (resp.a (p +8q,p) ou (p, p + 8q)).
Un tel module est caractérisé & isométrie prés par son type (pair ou
impair) et sa signature, et il existe si et seulement si, dans le cas pair, on
a s=r mod 8.

7.2. LEMME. Soit A un anneau principal, et soit M un A-module
de type fini, sans torsion, de rang n, muni d’une forme alternée de déter-
minant inversible dans A. Alors, n est pair, soit n=2m, et M est
isométrigue @ une somme orthogonale de m copies de A? muni de la
Jorme Xy, — X3)1.

Nous en venons maintenant aux réseaux o-isoduaux orthogonaux ou
symplectiques, en supposant ¢ # =+ Id, ce qui assure dans le premier cas que
la forme b, est indéfinie.

7.3. THEOREME. Soit o € O(E) de carré =+1d, o #+ =1d. Alors,
la famille %, est composée d’une unique orbite sous G, (représentée
par Z" muni d’un automorphisme convenable), sauf dans le cas des
réseaux orthogonaux de dimension paire, ou il existe une seconde orbite
représentée par des réseaux 21" ou D (selon la signature de b,).

Démonstration. Comme G, est le groupe orthogonal de b,, deux
réseaux appartiennent a la méme orbite sous G, si et seulement si les formes
b, qui leur sont associées sont isométriques. Les lemmes 7.1 et 7.2 montrent
qu’il y a selon les cas au plus une ou deux orbites, et les exemples de Z" et

de D,, (cf. ex. 6.4, (3)) montrent que ces orbites existent effective-
ment. [

La proposition ci-dessous décrit les espaces # dans les cas orthogonaux
et symplectiques. Sa démonstration découle tout de suite de la définition
de 7 (prop. 6.1, (4)).

7.4. PROPOSITION.

(1) Dans le cas orthogonal, soit E =E* 1L E- la décomposition
de E en sous-espaces propres pour o. On a alors

7 ={veEnd*E)|0(E*) CE~ e v(E")CE*},

et donc dim 7 = dimE* .dim E .
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(2) Dans le cas symplectique, soit % une base orthonormée de E dans
laquelle la matrice de G, est formée de blocs diagonaux de la

forme ( 0

) . Alors, les éléments de 77 sont ceux qui ont pour
matrices les matrices symétriques formées de blocs de la forme

a b . . (i L4
(b ); la dimension de 7 est donc m?+ m (on a posé
—a

n=2m).

[Dans le cas symplectique, la dimension du commutant de ¢ dans
Ends(E) est m? ([B-M2], prop. 3.3), et ’on a bien ’—“L;ﬂ —m?=m?*+ m.]

7.5. REMARQUE. Lorsque ¢ = =+ 1Id, la dimension de %, donc aussi
celle de la sous-variété des automorphismes symétriques de G, est nulle. Il
en resulte que les composantes connexes de .7, sont les classes d’isométrie de
réseaux unimodulaires. La classification a été faite jusqu’a la dimension 25,
cf. [C-S], ch. 16-18 et les références qui s’y trouvent. Le groupe G, est dans
ce cas le groupe orthogonal O(F), qui a deux composantes connexes. Le
nombre d’orbites de .7, sous G, tend vers I’infini avec la dimension de E, ce
qui montre que I’hypotheése «c # =+ Id» ne peut pas étre supprimée de 1’énoncé
du th. 7.3.

7.6. THEOREME. Dans le cas orthogonal (avec ¢ + =+ 1d) ou symplec-
tique, les réseaux c-extrémes sont strictement extrémes, et leurs vecteurs
minimaux engendrent [’espace E.

Démonstration. Compte tenu du th. 4.5,(i), il suffit de prouver que,
si L € .7, est un réseau c-extréme, ’ensemble S de ses vecteurs minimaux
engendre E. La démonstration se fera par ’absurde en utilisant le fait que,
siv e 7 est tel que 9, (v) = 0 pour tout x € S, il existe un réseau extréme (de
la forme (exp(zv/2)) (L) pour ¢ > 0 assez petit) dont I’ensemble des vecteurs
minimaux est S N Ker v (cf. 4.6-4.8). Dans tous les cas, on se ramene au cas
ou les vecteurs minimaux sont contenus dans un sous-espace c-stable de E
de codimension > 2.

Commencons par le cas symplectique. Si S est contenu dans un hyperplan
H de E, soit F = H n o(H) le sous-espace o-stable maximal de H. Dans une
base # convenable de P = F*, la matrice de la restriction de ¢ a P est

0 1 ,
( 1 O)' On considére ’endomorphisme v € Z nul sur F et dont la

0 ,
restriction a P a pour matrice (1 O) dans Z. Alors x— ¢, (v) est nul ou
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de signe constant sur ’hyperplan H, a fortiori sur S. En effet, soit
x=Ae+y,LeR, yeF, lécriture de x e H selon la décomposition
H=RelF. On a 0,()=0v(x).x=2Av(e).(he+y)=r*v(e).e (car
v(e).y = e.v(y) = 0); ainsi, quitte a remplacer v par — v, on peut SUpposer
®.(v) > 0 pour tout x € H. Il existe donc un réseau c-extréme dont 1’en-
semble des vecteurs minimaux est Ker v n S contenu dans F. On peut donc
supposer désormais S contenu dans F. Soit alors K un hyperplan de F disjoint
de S, G = K n o(K) le sous-espace stable correspondant, et Q le plan ortho-
gonal de G dans F, de sorte que Plona E = P L Q L G. On considere v € 7
nul sur G et qui échange les plans P et Q; dans une base de P L Q convenable,
on a

0 1 0 0 0 0 1 0
10 0 0 o 0o 0o -1

A= 0o 0 o 1) “W=L1 0 o0 o
0 0 -1 0 0 -1 0 0

On a alors ¢,(v) =0 pour tout xe F=Q L G, car v(x) appar-
tient a P = F!, donc cet endomorphisme v permet de construire un
réseau  (c-extréme) dont [I’ensemble des vecteurs minimaux est
SNnKero CSNnGCSnK=0, ce qui est absurde.

Supposons désormais o2 = Id, ¢ # +1Id, notons E* et E~- les sous-
espaces propres de o pour les valeurs propres + 1 et — 1, et soit L un
réseau o-extréme dont ’ensemble S des vecteurs minimaux est inclus dans un
hyperplan H de E . 1l existe un hyperplan c-stable 7 de H dont le plan ortho-
gonal P = F! contient un vecteur propre e de ¢ pour la valeur + 1 et un
vecteur propre e’ pour la valeur — 1 (e et e’ sont supposés unitaires). Si H
n’est pas stable par o, il suffit de prendre comme dans le cas symplectique
F = H n o(H). En effet, si le plan F+ était contenu dans £+ par exemple,
il en serait a fortiori de méme pour la droite H+ C F*, de sorte que H
serait o-stable. Ainsi la restriction de ¢ au plan stable F+ est # + Id. Si
I’hyperplan H est stable, par exemple si H+ est inclus dans £+, on considére
un plan P engendré par la droite H+ et un vecteur non nul de £~ (par
hypothese il en existe). Le sous-espace o-stable F = P+ répond a la question.
L’endomorphisme v qui est nul sur F et qui échange e et ¢’ appartient a & et
I’on peut supposer ¢, (v) = 0 pour tout x € H (méme démonstration que dans
le cas symplectique). Il permet donc de construire un réseau c-extréme L’ dont
I’ensemble S’ =S N Kerv de vecteurs minimaux est contenu dans F.
Désormais, L désigne un réseau o-extréme dont ’ensemble S des vecteurs
minimaux est inclus dans un sous-espace o-stable G de F de dimension
minimale. Puisque G est stable par ¢, et non nul, il contient au moins un vecteur
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propre (unitaire) ¢ pour o, par exemple ¢ € E*. I’endomorphisme v qui
échange les vecteurs e’ et ¢ et qui est nul sur orthogonal du plan {a, e’) appar-
tient a Z (si @ appartient a £~, on remplace e’ par e). De plus, SC G
est inclus dans I’hyperplan Kerv L Ra sur lequel ¢, (v) est nul ou de signe
constant (m€me démonstration que dans le cas symplectique). On peut
donc construire a partir de » ou de — v un nouveau réseau G-extréme dont
I’ensemble des vecteurs minimaux S N Ker v est contenu dans le sous-espace G-
stable G n Kerv strictement contenu dans G (puisque & n’appartient pas
a Kerv), ce qui est contraire au caractére minimal de G. [

8. CLASSIFICATION DES RESEAUX ISODUAUX DE PETITE DIMENSION

Dans ce paragraphe on considére un élément ¢ € O(E), généralement tel
que c2= +1Id (et o # +1d), et Ion recherche les réseaux oG-isoduaux
strictement extrémes pour o. D’aprés le corollaire 4.9, le nombre s de
couples =+ x de vecteurs minimaux d’un tel réseau est > dim(%;) + 1,
puisque le groupe de Lie %, est contenu dans le noyau du déterminant. Dans
les cas orthogonal et symplectique, on déduit du th. 7.4 les minorations
suivantes:

8.1. PROPOSITION. Soit L un réseau c-isodual c-extréme.

(1) Si L est c-orthogonal, ona s>=pqg+ 1, ou p et q sontles
multiplicités des valeurs propres +1 et —1 de o (p+ qg=n).

(2) Si L est c-symplectique, ona s=2m?*>+ m+ 1 (n=2m).

Le cas de la dimension 2 est facile: les réseaux de déterminant 1 sont tous
isoduaux pour une rotation d’ordre 4, et les réseaux extrémes sont semblables
a A,. (Du reste, on as > 3 par 8.1.) Ceux qui sont isoduaux pour une autre
transformation sont semblables a Z2 ou a A4,.

Les réseaux isoduaux de dimension 3 ont été décrits par Conway et Sloane
dans [C-S3], qui trouvent deux familles. L’une d’elle, qui correspond a une
rotation d’ordre 4, est formée de réseaux réductibles, cf. la fin du §4. L’autre
correspond au cas ou + ¢ est une rotation d’angle . Pour cette famille, il y
a un unique réseau c-extréme, le réseau ccc de [C-S3].

On retrouve ce résultat en utilisant la classification (au sens de la déf. 5.1,
appliquée a I’exemple 2.3) qui est faite dans [Ber]. On montre en effet
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([Ber], 2.8) que les seules classes de réseaux de dimension 3 avec s(L)
= s(L*) > 3 sont représentées (modulo similitudes) par les matrices

1 ¢t ¢ 1 2t—1 —1t
t 1 ), -1/3<t<1/2 et |2f-1 1 -], 1/73<t<1/2.
t ot 1 — 1 — § 1

On voit facilement que les réseaux correspondants sont normaux (et en fait
isoduaux) uniquement pour ¢ = 0 dans le premier cas (il s’agit alors de Z3),
et pour # = /2 — 1 dans le second, ce qui correspond au réseau ccc.

Le but de la suite du § est d’obtenir une classification des réseaux isoduaux
de dimension 4 ayant beaucoup de vecteurs minimaux. Nous nous appuierons
sur la notion de réseau normal (déf. 6.5). Nous donnerons en passant des
résultats un tout petit peu plus généraux.

8.2. THEOREME. Un réseau normal de dimension < 8 possédant une
section hyperplane critique (i.e. absolument extréme) est semblable a I’'un des
réseaux de racines A,, D4, E;.

Démonstration. Soit L un tel réseau, et M une section hyperplane critique
de L, de norme N(L); son déterminant est donné par la formule

N(L)y"-

n—1
n—1

det (M) =

Le minimum de L* est atteint sur les vecteurs primitifs de L* orthogonaux
a M, et I’on a donc

NEwy < @) 1 N
T odet()  det) y'o!

Le réseau L étant normal, la proposition 6.6 entraine 1’égalité
N(L*) = N(L)det(L) /"
En égalant ces deux expressions, on trouve la relation
YD) 2=yl

Or, l'inégalité de Mordell (cf. [Cas], ch. X, §3) s’écrit

2 n—1

YZ_ gYn—l e

Le réseau L réalise donc le maximum vy, de l’invariant d’Hermite, et ce

. , e ) = q . . .
dernier vérifie vy, “ = y"_|, ce qui, pour les dimensions pour lesquelles sa

valeur est connue, i.e. n < 8, ne se produit que pour n =2, n=4 et

n=28 []
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8.3. THEOREME. Soit L un réseau normal de dimension paire
n = 2m, etsoit M une section critique de dimension m de L, de méme
norme que L. Alors, l'orthogonal M+ de M dans L¥* est critique et
de méme norme que L*.

Dans le cas m =2, si % est une base de L formée de vecteurs
minimaux dont les m premiers engendrent M, les m derniers vecteurs
de A* sont minimaux et engendrent M*.

Démonstration. De facon générale, pour toute section M de tout
réseau L, on a det(M) = det(L)det(M+*). Dans le cas qui nous occupe,

.. d m
compte tenu de la proposition 6.6, on a defim) = ji,v((LL.ﬂ)m, et donc

y(M*+)m  det(M) NWM*H)m  NEL)" NMH)™ NMH” .

y(M)m  det(M*) N@M)"  NM)"™ N@L*H™  NELHm

b

puisque M réalise le maximum v, de ’invariant d’Hermite en dimension m,
I’inégalité précédente est une égalité, et I'on a donc Y(M*) =yM) = vn,
et N(M+) = N(L*), ce qui démontre la premiére partie de 1’énonce.

Considérons maintenant la base % = (ey, ...,e,). Pour tout vecteur
minimal x’ de L*, les composantes dans % * de x’ sont les produits scalaires
x’.e;, entiers bornés par (utiliser ’inégalité de Schwarz)

VN(x)N(e;) = YNLHNEL) = YyLHyL) <y, <2,

et donc éléments de {0, = 1}, quel que soit n < 8.
On applique ce qui précéde a un vecteur x’ € M+ et a ses composantes
dans la base (e, ,,...,e;) de M*.

Pour m = 2, M+ est semblable a A, et posséde donc 3 couples de vecteurs
minimaux. Mais x = eF + e, et y = e; — e} ne peuvent étre simultanément
minimaux («méthode des déterminants caractéristiques» de Korkine et
Zolotareff: (x,y) et (ej,e)) doivent engendrer le méme réseau), donc
e; et e] sont minimaux. [

Nous passons maintenant au cas de la dimension n = 4. On utilise la classi-
fication de [B-M;], § 5, ou les réseaux engendrés par leurs vecteurs minimaux
sont répartis en 18 classes (au sens du §5) a4, as, bs,...,a9,be,a9,a,
les deux derniéres étant formées des classes de similitude de A, et de D,; la
classe ao est décrite dans I’exemple 6.4, (2).

8.4. THEOREME. Les réseaux normaux de dimension 4 possédant au

moins 7 couples de vecteurs minimaux sont les réseaux de la classe ao ou
sont semblables a D,.
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8.5. COROLLAIRE. Les réseaux isoduaux symplectiques c-extrémes sont
les réseaux semblables a D,.

Démonstration de 8.5. On sait (prop. 8.1) qu’un tel réseau possede au
moins 7 couples de vecteurs minimaux, et, d’aprés ’exemple 6.4,(2), 'inva-
riant d’Hermite ne posséde pas de maximum relatif sur la classe ay. []

Démonstration de 8.4. Le cas d’un réseau possédant une section hyper-
plane critique de méme norme résulte du th. 8.2, ce qui résoud le cas des classes
di,bs,be,ai et ay,.

Il reste a examiner les réseaux L de I’une des classes a7, b7, c7, ag.

Le cas de la classe b, est facile. Flle est caractérisée par 1’existence de
7 vecteurs minimaux répartis dans 3 réseaux A, ayant un vecteur minimal e
en commun. D’apres le th. 8.3, le réseau orthogonal a e dans L* possede
3 sections minimales de type A4,, et donc 6 vecteurs minimaux. Il est donc
semblable a As, et ’on conclut par le th. 8.2 appliqué a L*.

Pour traiter les trois derniers cas, nous avons utilisé le théoréme 8.3
complété par des calculs explicites de matrices adjointes, conduits en s’aidant
du systeme PARI. Nous illustrons le procédé en traitant ci-dessous le cas de
la classe ag.

Il résulte de [B-M1], §5, que ces réseaux peuvent étre définis dans une
base (e, e, e3, e4) convenable par les matrices de Gram ci-dessous:

2 —1 -1 t
-1 2 u -1
—1 u 2 -1
t -1 -1 2
On trouve N(ef)— N(ey)=2(u—1t)(1 —u—1), expression qui
doit €tre nulle puisque (e;,e,) est un réseau de type A,, cf. th. 8.3. Si
u=1—1 on obtient des matrices représentant ay,. Si # = ¢, on trouve
s N(e) —efes =Q—-1)Qt— 1) et I N(e¥) + e¥. e = 3(2 — 1), expres-
sions qui ne peuvent s’annuler que pour 7 = % (| ¢| ne peut pas dépasser la
valeur 1), cas dans lequel on obtient le réseau L; € ao. [

8.6. REMARQUE. Nous avons recherché les réseaux normaux dans les
classes ¢ et dg (ce qui couvre tous les cas o il y a deux sections minimales
de type A;). La classe ¢ n’en contient pas. La classe de contient une famille
a deux parametres de réseaux normaux, qui sont en fait isoduaux de type
symplectique. Le bord de cette famille est la classe g = a9 U a,. Elle
contient des sous-variétés de dimension 1 formées de réseaux isoduaux de type
orthogonal. En tant que réseaux o-isoduaux de type orthogonal, Li et Dy
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sont c-extrémes pour chacun des systémes de valeurs propres possibles. Ce
sont probablement les seuls.

Nous avons également recherché les réseaux c-isoduaux pour un o de
valeurs propres (+1, +1, —1, — 1) admettant une base de vecteurs minimaux
conforme au lemme 7.1. Outre la famille ci-dessus, on trouve une famille 3
deux paramétres a la fois symplectique et orthogonale avec s = 4. Son bord
est contenu dans I’adhérence de la premiére famille.

Voici des matrices de Gram pour chacune de ces deux familles (renor-
malisées a la norme 2):

[Cas]
[C-S]
[C-S1]
[C-S2]

[C-S3]

2 —1 X ¥y 2 0 t u

-1 2 b% —X—y 0 2 u —t

X y 2 -1 t u 2 0

y -x-y -1 2 u -t 0 2
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