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Remark 14. The Hessian of a binary form F e S3Hv is identically zero
iff F is degenerate; it is negative semi-definite if F is non-degenerate and

A(F) ^ 0; it is indefinite iff À(F) > 0[Ca]. Only in the indefinite case

A(F)>0 can the closure : {h e HR \ detF1 (h) < 0} of the Hesse

cone be a proper subset of HR.

Example 16. Let P PPi(E) be the projectivization of a rank-2
vector bundle E with Chern classes c, — cz (JE). The cup-form of P
yields the cubic polynomial / (c\- c2)X2 + 3(- cx)X2Y + 3XY2
whose Hessian is Hf=(-c2)X2 + cxXY - Y2. Rewriting Hf as

Hf= - \[{2Y - ClX)* + X*{4c2~ c\)\ =^[(2Y-ClX)2-A(f)X2] we
find 3 possibilities for the Hesse cone:

i) A (/) < 0 : XXf 7/2 (P, R) \ {0}

ii) A(/) 0: H2(PiR)\LCl for a real line LCx depending on
cx (LCl — R(2, cx) in the coordinates X, Y)

iii) A(/)>0:^f/ is an open cone whose angle is determined

by A(/) ((Z + ]/A(f)X) (Z - \/A(f)X) >0 in coordinates

X,Z: 2Y- cjX).

5.3 3-folds with b2 ^ 3

Let X be a 1-connected, compact complex 3-fold with H2(X, Z) Z®3.
The cup-form of X gives rise to a curve Cx of degree 3 in the projective
plane P (H2(X, C)) :

Cx:= {<h> e F(H2(X,C))\h3 0}

A first natural question is which types of plane cubic curves occur in
this way?

Recall that there are 10 types of plane cubics, namely: 1) non-singular
cubics, 2) irreducible cubics with a node, 3) irreducible cubics with a cusp,
4) reducible cubics consisting of a smooth conic and a transversal line,
5) smooth conics with a tangent line, 6) three lines forming a triangle, 7) three

distinct lines through a common point, 8) a double line with a third skew

line, 9) a triple line, 10) the trivial 'cubic' with equation 0.

Lemma 4. If the 3-fold X has a non-trivial Hodge number
h2>Q(X) F 0, then Cx is of type 4), 6) 9) or 10).
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Proof. Choose basis vectors ekJ e Hk>l(X), so that every h e H2(X, C)

can be uniquely written as h xe2'0 + ye1A + ze°>2.

Then clearly h3 y[y2(el>1)3 + 6xz(e2'0 • e1*1 • e0>2)].

We now realize the cubics of types 7)-10). These cubics are degenerate,

i.e. they are cones, and therefore their Hessians vanish identically. From
section 4.3 we know that they can not be realized by Kählerian 3-folds.

Proposition 20. The plane cubics of types 7)-10) can all be realized

by 1-connected, non-Kählerian 3-folds.

Proof. 'Cubics' of type 10) can be realized by elliptic fibre bundles

over surfaces Y with b2{Y) 5. In order to realize cubics of type 9) or 7)

one blows up one or two points in an elliptic fibre bundle over a surface
with b2 4 or 3 respectively. The realization of a type 8) cubic is a little
trickier: One starts with an elliptic fibre bundle over a surface Y with
b2(Y) 3, and blows up one of its fibers. The resulting 3-fold X' has

b2(X') 2 and FX' 0. Now choose a line / in the exceptional divisor E
of X\ and let X be the blow-up of X' along /. The cup-form of X yields
the cubic polynomial x2 [y(-31 • E) - x(degATc/;r)] with a non-zero
coefficient -31 - E 3.

There are four types of complex cubics which we have been able to
realize by projective 3-folds.

Proposition 21. Cubics of type If 3f 4) and 6) are realizable by
1-connected projective 3-folds.

Proof. Type 1) occurs for blow-ups of complete intersections in two
distinct points. The product P1 X P1 x P1 realizes a triangle, whereas most
projective bundles over a surface with b2 2 lead to the union of a smooth
conic and a transversal line.

Irreducible cubics with a cusp can be obtained by blowing-up a line and
a point in P3. The resulting 3-fold yields the cubic polynomial X3 - 3XY2
- 2Y3 + Z3 (X+ Y)2(X- 2Y) + Z3.

The remaining two types of cubics are cubics with a node (type 2)), and
smooth conics with a tangent line (type 5)). We do not know if these types
are realizable by projective 3-folds. A non-Kählerian 3-fold whose cup-form
yields a nodal cubic can be constructed: one just takes the blow-up of two
suitable curves in Oguiso s Calabi-Yau 3-fold with b2 1 and vanishing
cup-form.
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Finally we like to show that the non-emptiness condition on the index cone

of a projective 3-fold with h°>2 0 gives non-trivial restrictions for the

possible cup-forms if b2 > 4. Further investigations of this condition will
appear elsewhere [Sch].

Example 17. Let F be a free Z-module of rank 4 with basis

(p/)/=i,...,4- Consider a trilinear form F e S3HV and its adjoint map
Ft:H~^S2Hv. The image Fl(h) of an element h e H is in terms of
the chosen basis (e/)/= i, ...,4 represented by the symmetric 4 x 4-matrix
[[hetej]] ij Suppose this matrix is a diagonal sum [[/*£/£/]]/,y 1,2

© [[Äe^e/]] *:,/ 3,4 such that the determinants of both 2 x 2-matrices are

negative for every h e H\{0}.
In this case F((h) were of signature (1, —1,1, -1) for every h e FA{0},

and we would have IF - 0.

All these conditions can be met, e.g. by setting e\e2 e\ e\eA P4

1, é?2 P3P4 2, and £/£/££ 0 otherwise. In this particular case the

image of h under Fl is represented by the matrix

h2 h\ + 2h2
0

h\ + lh2 2h\ + h2

Ha, h?, + 2h4

0

hj + 2h4 2 /z
3 + h4

which has a positive determinant unless h 0.
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