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REMARK 14. The Hessian of a binary form F € S?®HV is identically zero
iff F is degenerate; it is negative semi-definite if F is non-degenerate and
A(F) < 0; it is indefinite iff A(F) > 0[Ca]. Only in the indefinite case
A(F) > 0 can the closure &7 := {h e Hg|det F'(h) <0} of the Hesse
cone be a proper subset of Hy.

EXAMPLE 16. Let P = Pp2(E) be the projectivization of a rank-2
vector bundle E with Chern classes c¢; = ¢;(£). The cup-form of P
yields the cubic polynomial [ = (cf — ) X2+ 3(—c) XY +3XY?
whose Hessian is Hy= (—c¢;)X?+ ¢; XY — Y2, Rewriting H; as
Hy= —;[QY - 1 X)2+ X2(4e, — )] = 2L [QY — e, X) 2 — A(f) X2] we
find 3 possibilities for the Hesse cone:

) A(f) <0:2 =H2(P,R)\{0}

i) A(f)=0:2¢;=H?*(P,R)\L., for a real line L. depending on
¢ (L., = R(2,¢)) in the coordinates X, Y)

i) A(f)>0:27, is an open cone whose angle is determined

by A(f) ((Z+)VANHX)(Z-)VA(f)X)>0 in coordinates
X,Z:=2Y - X).

5.3 3-FOLDS WITH b, > 3

Let X be a 1-connected, compact complex 3-fold with H,(X,Z) = Z93.
The cup-form of X gives rise to a curve Cy of degree 3 in the projective
plane P(H?(X, C)):

Cx:={<h>eP(H*(X,C))|h?=0}.

A first natural question is which types of plane cubic curves occur in
this way?

Recall that there are 10 types of plane cubics, namely: 1) non-singular
cubics, 2) irreducible cubics with a node, 3) irreducible cubics with a cusp,
4) reducible cubics consisting of a smooth conic and a transversal line,
5) smooth conics with a tangent line, 6) three lines forming a triangle, 7) three
distinct lines through a common point, 8) a double line with a third skew
line, 9) a triple line, 10) the trivial ‘cubic’ with equation 0.

LEMMA 4. If the 3-fold X has a non-trivial Hodge number
h29(X) #0, then Cx is of type 4), 6) 9) or 10).
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Proof. Choose basis vectors et/ € H%!(X), so that every h € H*(X, C)
can be uniquely written as 4 = xe>? + yel:! + ze%2.
Then clearly 43 = y[y2(el!)3 + 6xz(e20 - el! - e%2)].

We now realize the cubics of types 7)-10). These cubics are degenerate,
i.e. they are cones, and therefore their Hessians vanish identically. From
section 4.3 we know that they can not be realized by Kéhlerian 3-folds.

PROPOSITION 20. The plane cubics of types 7)-10) can all be realized
by I-connected, non-Kdhlerian 3-folds.

Proof. ‘Cubics’ of type 10) can be realized by elliptic fibre bundles
over surfaces Y with b,(Y) = 5. In order to realize cubics of type 9) or 7)
one blows up one or two points in an elliptic fibre bundle over a surface
with b, = 4 or 3 respectively. The realization of a type 8) cubic is a little
trickier: One starts with an elliptic fibre bundle over a surface Y with
b,(Y) =3, and blows up one of its fibers. The resulting 3-fold X’ has
b,(X') =2 and Fx- = 0. Now choose a line / in the exceptional divisor E
of X', and let X be the blow-up of X along /. The cup-form of X yields
the cubic polynomial x2[y(—3/:E)~— x(degNg,x-)] with a non-zero
coefficient — 3/ E = 3.

There are four types of complex cubics which we have been able to
realize by projective 3-folds.

PROPOSITION 21. Cubics of type 1), 3), 4) and 6) are realizable by
I-connected projective 3-folds.

Proof. Type 1) occurs for blow-ups of complete intersections in two
distinct points. The product P! x P! x P! realizes a triangle, whereas most
projective bundles over a surface with b, = 2 lead to the union of a smooth
conic and a transversal line.

Irreducible cubics with a cusp can be obtained by blowing-up a line and
a point in P3. The resulting 3-fold yields the cubic polynomial X3 — 3 XY?2
—2Y3 + 23 =X+ Y)2(X-2Y) + Z3.

The remaining two types of cubics are cubics with a node (type 2)), and
smooth conics with a tangent line (type 5)). We do not know if these types
are realizable by projective 3-folds. A non-Kéhlerian 3-fold whose cup-form
yields a nodal cubic can be constructed: one just takes the blow-up of two

suitable curves in Oguiso’s Calabi-Yau 3-fold with b, =1 and vanishing
cup-form.
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Finally we like to show that the non-emptiness condition on the index cone
of a projective 3-fold with 4£%2 = 0 gives non-trivial restrictions for the
possible cup-forms if b, > 4. Further investigations of this condition will
appear elsewhere [Sch].

ExXAMPLE 17. Let H be a free Z-module of rank 4 with basis
(€éi)i=1,...4. Consider a trilinear form F e S?*HY and its adjoint map
F':H— S?Hv. The image F‘(h) of an element 47 € H is in terms of
the chosen basis (e;);-; .. 4 represented by the symmetric 4 X 4-matrix
[[he;e;1]: =1, 4. Suppose this matrix is a diagonal sum [[ke;e]]; ;-1
@ [[herel) k. 1=3 4 such that the determinants of both 2 X 2-matrices are
negative for every 7 € H\{0}.

In this case F*(h) were of signature (1, —1, 1, —1) for every h € H\{0},
and we would have I = 27 = 0.

All these conditions can be met, e.g. by setting ele, = e; = eje, = e,
= 1,e,e? = e;e2 =2, and e;eje, = 0 otherwise. In this particular case the
image of 4 = Z?:  h;e; under F'is represented by the matrix

h; hy + 2h,

h1 + 2h2 2h1 + hZ

hy hs + 2hy

h; + 2hy 2h; + hy

which has a positive determinant unless # = 0.
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