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There will certainly be some gaps for algebraic 3-folds. In order to show
this, we prove the following finiteness theorem for families of Ké&hler
structures:

THEOREM 7. Fix a positive constant c. There exist only finitely many
Jamilies of 1-connected, smooth projective 3-folds X with H,(X,Z) = Z
wy(X) #0, and with b;(X) < c

- Proof. Let X be a smooth projective 3-fold with H,(X,Z) = {0},
H,(X,Z) =Z, and with w,(X) # 0. Clearly Pic(X) = H?*(X, Z), and we
can choose a basis e € H?(X,Z) corresponding to the ample generator
of Pic(X).

Let ¢;(X) = cie,c,(X) = c,&€ where e? = deg,e(e) = 1. If ¢, is positive,
then X is Fano, and there are only finitely many possibilities [Mu]. The
case ¢; = 0 is excluded, so that we are left with ¢; < 0, i.e. the canonical
bundle of X is ample.

The Riemann-Roch formula (X, Zx)=1—- h3(X, Ox) = i C1Cy
shows that the set of possible Chern numbers ¢, ¢, is bounded from below:
24(1 — ¢) € ¢;c,. Using Yau’s inequality 8c¢;(X)c,(X) < 3¢;(X)3? we find
that d | c, |3 < 64(c — 1), i.e. the degree d and the order of divisibility | ¢, | of
c;(X) is bounded. Now Kollar’s finiteness theorem [Ko2] yields the
assertion.

ExaMPLE 15. Let X be a 1-connected, smooth projective 3-fold with
H,(X,Z) =17 and w,(X) # 0. If b3(X) <2, then A3(X, 7x) <1 and X
must be Fano of index 1 or 3. For b;(X) = 4 we have that X is either Fano,
or h3(X, £x) = 2 and X is of general type with d|c; |3 <

Note that the assumption w, # 0 was only used to exclude Calabi-Yau
3-folds.

5.2 3-FOLDS WITH b, = 2

Let X be a 1l-connected, closed, oriented, 6-dimensional differentiable
manifold with H,(X, Z) =

We choose a basis e;, e, for H2(X,Z) and set a, = e';',al == efez,az
= eleg, as; = ei; the cubic polynomial f associated to the cup-form
of X is then given by f =a¢X®+ 3a, X?Y + 3a,XY? + a;Y3. The
discriminant of f is by definition A(f) = aga3 3a — 6apa,a,a;
+ 4a0a§ + 4a’ 1a3; up to a factor it is simply the dlscrlmmant of the
Hessian H; = 62[(apa, — a}) X2 + (apas — a1a,) XY + (a,a3 — a)Y?] of
FiA(f) = (agas — a,a,)? — 4(apa, — at) (a,as — az).
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The last identity shows that A(f) is always a square modulo 4, i.e.
A(f) =0, 1(mod 4).

PROPOSITION 17. Every integer A =0, 1(mod4) is realizable as discri-
minant of a compact complex 3-fold.

Proof. Consider the projectivization X = Pp2(E) of a holomorphic
rank-2 vector bundle E over the plane. In terms of the standard basis
of HX(X,Z)(e; = n*h, e, = ¢,(£p (1)) the cubic polynomial associated
to X is given by f = (¢} — ;) X3 4+ 3(—¢;) X2Y + 3XY?, where ¢; = ¢;(E)
are the Chern classes of E considered as integers. Inserting this into the
discriminant formula yields A(f) = cf — 4¢,. Since every pair ¢y, ¢, OCcurs
as pair of Chern classes of a holomorphic rank-2 bundle on P2, every
integer A = 0, 1(mod4) can be realized as discriminant of a holomorphic
projective bundle Pp2 (F).

Recall from section 3.2 that there are 4 different types of SL(2)-orbits
of complex binary cubics: non-singular forms f (with A(f) # 0), and three
orbits of singular cubics, represented by the normal forms X?Y, X3, and 0.

PROPOSITION 18. All four types of complex binary cubics are realizable
by complex 3-folds.

Proof. We have seen this already for non-singular cubics. Clearly the
product P! x P? realizes the normal form X2?Y. The cubics of normal
forms X3 or 0 are degenerate, i.e. their Hessians vanish identically. There-
fore they can only be realized by non-Kéhlerian 3-folds. To realize X3 one
can blow up a point in an elliptic fiber bundle over a surface Y with
b,(Y) = 3; the trivial form occurs for elliptic fiber bundles over a surface
with b, = 4.

More detailed investigations of the possible homotopy types of real or
complex manifolds with b, = 2 will appear elsewhere [Sch].

Here we only want to illustrate an interesting phenomenon which relates
the ample cone of a projective 3-fold with b, = 2 to the Hessian of its
cup-form.

PROPOSITION 19. Let X be a smooth projective 3-fold with
by(X) =2. The ample cone €x is contained in the Hesse cone
Hri={he H*(X,R)|det(F(h)) < 0}.

Proof. This is only a special case of our general result in section 4.3.
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REMARK 14. The Hessian of a binary form F € S?®HV is identically zero
iff F is degenerate; it is negative semi-definite if F is non-degenerate and
A(F) < 0; it is indefinite iff A(F) > 0[Ca]. Only in the indefinite case
A(F) > 0 can the closure &7 := {h e Hg|det F'(h) <0} of the Hesse
cone be a proper subset of Hy.

EXAMPLE 16. Let P = Pp2(E) be the projectivization of a rank-2
vector bundle E with Chern classes c¢; = ¢;(£). The cup-form of P
yields the cubic polynomial [ = (cf — ) X2+ 3(—c) XY +3XY?
whose Hessian is Hy= (—c¢;)X?+ ¢; XY — Y2, Rewriting H; as
Hy= —;[QY - 1 X)2+ X2(4e, — )] = 2L [QY — e, X) 2 — A(f) X2] we
find 3 possibilities for the Hesse cone:

) A(f) <0:2 =H2(P,R)\{0}

i) A(f)=0:2¢;=H?*(P,R)\L., for a real line L. depending on
¢ (L., = R(2,¢)) in the coordinates X, Y)

i) A(f)>0:27, is an open cone whose angle is determined

by A(f) ((Z+)VANHX)(Z-)VA(f)X)>0 in coordinates
X,Z:=2Y - X).

5.3 3-FOLDS WITH b, > 3

Let X be a 1-connected, compact complex 3-fold with H,(X,Z) = Z93.
The cup-form of X gives rise to a curve Cy of degree 3 in the projective
plane P(H?(X, C)):

Cx:={<h>eP(H*(X,C))|h?=0}.

A first natural question is which types of plane cubic curves occur in
this way?

Recall that there are 10 types of plane cubics, namely: 1) non-singular
cubics, 2) irreducible cubics with a node, 3) irreducible cubics with a cusp,
4) reducible cubics consisting of a smooth conic and a transversal line,
5) smooth conics with a tangent line, 6) three lines forming a triangle, 7) three
distinct lines through a common point, 8) a double line with a third skew
line, 9) a triple line, 10) the trivial ‘cubic’ with equation 0.

LEMMA 4. If the 3-fold X has a non-trivial Hodge number
h29(X) #0, then Cx is of type 4), 6) 9) or 10).
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