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theorem for 3-folds with b, =1, w, # 0, and we give examples which
show that the condition /r, # @ for the index cone of a projective 3-fold
with #%2 = 0 is non-trivial in general.

5.1 3-FOLDS WITH b, = 1

Recall from section 1.1 that every closed, oriented, 1-connected differen-
tiable 6-manifold X with torsion-free homology has a connected sum
decomposition X = X.%,S53 x S3 where r = (ngﬁ), which 1is unique
up to orientation preserving diffeomorphisms; the manifold X, with
b;(Xo) = 0 is the core of X.

THEOREM 6. Let X, be a I-connected, closed, oriented differentiable
6-manifold with H,(Xo.,Z)=12Z and b3(Xo)=0. There exists a
compact complex 3-fold X whose core is orientation preservingly homotopy
equivalent to Xo.

Proof. The oriented homotopy type of X, is determined by the inva-
riants d, w,, and p,(mod 48); more precisely: for d = 1(mod 2) there is a
single homotopy type whereas for d = 0(mod 2) there are three; one of these
3 types has w, # 0, the other two are spin, they are distinguished by
p1 = 4d(mod 48), p, = 4d + 24(mod 48) respectively. In order to realize
these homotopy types as cores of complex 3-folds we first look at simple
cyclic coverings of P3. Given a positive integer d, let m: X — P3 be
a simple cyclic covering of P3? branched along a smooth surface B
of degree d/. Then X has the correct ‘degree’ d and the characteristic
classes wo, =(d—1)/(mod2), and p, =4d+ (1 —d)(1 +d)dI[?, see 4.2.
For odd d there is nothing to prove. For even d we can realize w, = 0
or w, # 0 by choosing / = 0(mod 2) or / = 1(mod 2). Taking / = 0(mod 4)
gives w, = 0, p; = 4d(mod 48), taking / = 2(mod4) yields w, = 0, and
p1 = 4d + 24(mod 48). It remains to treat the special case d = 0, where
the 3 homotopy types are given by w, # 0, by w, =0, p, = 0(mod 16),
and by w, = 0, p, = 8(mod 16). The first two homotopy types are realizable
as cores of elliptic fiber bundles over the projective plane blown up in
two points.

The third homotopy type is realized by the core of Oguiso’s Calabi-Yau
3-fold X, with vanishing cup-form and p,(X,) = 120s,.

The result just proven suggests a natural question: given a manifold X,
as above, which (even) integers b; > 0 occur as the third Betti numbers of
complex 3-folds X whose core is homotopy equivalent to X ?
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There will certainly be some gaps for algebraic 3-folds. In order to show
this, we prove the following finiteness theorem for families of Ké&hler
structures:

THEOREM 7. Fix a positive constant c. There exist only finitely many
Jamilies of 1-connected, smooth projective 3-folds X with H,(X,Z) = Z
wy(X) #0, and with b;(X) < c

- Proof. Let X be a smooth projective 3-fold with H,(X,Z) = {0},
H,(X,Z) =Z, and with w,(X) # 0. Clearly Pic(X) = H?*(X, Z), and we
can choose a basis e € H?(X,Z) corresponding to the ample generator
of Pic(X).

Let ¢;(X) = cie,c,(X) = c,&€ where e? = deg,e(e) = 1. If ¢, is positive,
then X is Fano, and there are only finitely many possibilities [Mu]. The
case ¢; = 0 is excluded, so that we are left with ¢; < 0, i.e. the canonical
bundle of X is ample.

The Riemann-Roch formula (X, Zx)=1—- h3(X, Ox) = i C1Cy
shows that the set of possible Chern numbers ¢, ¢, is bounded from below:
24(1 — ¢) € ¢;c,. Using Yau’s inequality 8c¢;(X)c,(X) < 3¢;(X)3? we find
that d | c, |3 < 64(c — 1), i.e. the degree d and the order of divisibility | ¢, | of
c;(X) is bounded. Now Kollar’s finiteness theorem [Ko2] yields the
assertion.

ExaMPLE 15. Let X be a 1-connected, smooth projective 3-fold with
H,(X,Z) =17 and w,(X) # 0. If b3(X) <2, then A3(X, 7x) <1 and X
must be Fano of index 1 or 3. For b;(X) = 4 we have that X is either Fano,
or h3(X, £x) = 2 and X is of general type with d|c; |3 <

Note that the assumption w, # 0 was only used to exclude Calabi-Yau
3-folds.

5.2 3-FOLDS WITH b, = 2

Let X be a 1l-connected, closed, oriented, 6-dimensional differentiable
manifold with H,(X, Z) =

We choose a basis e;, e, for H2(X,Z) and set a, = e';',al == efez,az
= eleg, as; = ei; the cubic polynomial f associated to the cup-form
of X is then given by f =a¢X®+ 3a, X?Y + 3a,XY? + a;Y3. The
discriminant of f is by definition A(f) = aga3 3a — 6apa,a,a;
+ 4a0a§ + 4a’ 1a3; up to a factor it is simply the dlscrlmmant of the
Hessian H; = 62[(apa, — a}) X2 + (apas — a1a,) XY + (a,a3 — a)Y?] of
FiA(f) = (agas — a,a,)? — 4(apa, — at) (a,as — az).
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