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324 CH. OKONEK AND A. VAN DE VEN

EXAMPLE 13 (Twistor spaces). Let p:Z — M be the twistor fibration of
a closed, oriented Riemannian 4-manifold (M, g). Z carries a natural almost
complex structure which is integrable if and only if g is self-dual [A/H/S].

Examples of 1-connected 4-manifolds which admit self-dual structures are
S4,%,P2 and K3-surfaces.

The total spaces of their twistor fibrations are 1-connected complex 3-folds
which may be Moishezon for S* and § ,P2? [C], but which are usually
non-Kahler [Hi]. We leave it to the reader to calculate the topological
invariants of these 3-folds. There is an interesting relation between Twistor
spaces of connected sums and Kato’s connection operation + for class L
manifolds [K2], [D/F].

EXAMPLE 14 (Oguiso). In a recent preprint [O1] K. Oguiso constructs
examples of 1-connected, Moishezon Calabi-Yau 3-folds with very interesting
cup-forms. He proves that for every integer d > 1 there exists a smooth
complete intersection X of type (2, 4) in P> which contains a non-singular
rational curve C, of degree d with normal bundle Nc,x, = Zc,(—1)®2,

The 3-fold X, can now be flopped along C,, i.e. C, can be blown up
to P(Nc¢,/x,) = P! x P!, and then ‘blown down in the other direction’.
The resulting 3-fold X, is a 1-connected Moishezon manifold with trivial
canonical bundle and cup-form Fy, given by Fx, (xe;) = (d? — 8)x3. Here
e, € H*(X,,7Z) is the normalized generator corresponding to the strict
transform of the negative of a hyperplane section of X. The Pontrjagin
class of X, is p,(Xy) = (112 + 4d)e, where ¢, € H*(X,,Z) denotes the
generator with €,(e;) = 1. Since the Euler-number does not change under a
flop we have b;(X,) = 180 for every d.

5. COMPLEX 3-FOLDS WITH SMALL b,

In this section we investigate the following natural problem: Which
cubic forms can be realized as cup-forms of compact complex 3-folds? For
small b, something can be said: Any core of a 1-connected, closed, oriented
differentiable 6-manifold with H, (X, Z) = Z is homotopy equivalent to the
core of a l-connected complex 3-fold. In the case b, = 2, at least every
discriminant A is realizable by a complex manifold. If b, = 3 we can realize
all types of complex cubics with one exception, the union of a smooth conic
and a tangent line. In addition to these realization results we prove a finiteness
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theorem for 3-folds with b, =1, w, # 0, and we give examples which
show that the condition /r, # @ for the index cone of a projective 3-fold
with #%2 = 0 is non-trivial in general.

5.1 3-FOLDS WITH b, = 1

Recall from section 1.1 that every closed, oriented, 1-connected differen-
tiable 6-manifold X with torsion-free homology has a connected sum
decomposition X = X.%,S53 x S3 where r = (ngﬁ), which 1is unique
up to orientation preserving diffeomorphisms; the manifold X, with
b;(Xo) = 0 is the core of X.

THEOREM 6. Let X, be a I-connected, closed, oriented differentiable
6-manifold with H,(Xo.,Z)=12Z and b3(Xo)=0. There exists a
compact complex 3-fold X whose core is orientation preservingly homotopy
equivalent to Xo.

Proof. The oriented homotopy type of X, is determined by the inva-
riants d, w,, and p,(mod 48); more precisely: for d = 1(mod 2) there is a
single homotopy type whereas for d = 0(mod 2) there are three; one of these
3 types has w, # 0, the other two are spin, they are distinguished by
p1 = 4d(mod 48), p, = 4d + 24(mod 48) respectively. In order to realize
these homotopy types as cores of complex 3-folds we first look at simple
cyclic coverings of P3. Given a positive integer d, let m: X — P3 be
a simple cyclic covering of P3? branched along a smooth surface B
of degree d/. Then X has the correct ‘degree’ d and the characteristic
classes wo, =(d—1)/(mod2), and p, =4d+ (1 —d)(1 +d)dI[?, see 4.2.
For odd d there is nothing to prove. For even d we can realize w, = 0
or w, # 0 by choosing / = 0(mod 2) or / = 1(mod 2). Taking / = 0(mod 4)
gives w, = 0, p; = 4d(mod 48), taking / = 2(mod4) yields w, = 0, and
p1 = 4d + 24(mod 48). It remains to treat the special case d = 0, where
the 3 homotopy types are given by w, # 0, by w, =0, p, = 0(mod 16),
and by w, = 0, p, = 8(mod 16). The first two homotopy types are realizable
as cores of elliptic fiber bundles over the projective plane blown up in
two points.

The third homotopy type is realized by the core of Oguiso’s Calabi-Yau
3-fold X, with vanishing cup-form and p,(X,) = 120s,.

The result just proven suggests a natural question: given a manifold X,
as above, which (even) integers b; > 0 occur as the third Betti numbers of
complex 3-folds X whose core is homotopy equivalent to X ?
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There will certainly be some gaps for algebraic 3-folds. In order to show
this, we prove the following finiteness theorem for families of Ké&hler
structures:

THEOREM 7. Fix a positive constant c. There exist only finitely many
Jamilies of 1-connected, smooth projective 3-folds X with H,(X,Z) = Z
wy(X) #0, and with b;(X) < c

- Proof. Let X be a smooth projective 3-fold with H,(X,Z) = {0},
H,(X,Z) =Z, and with w,(X) # 0. Clearly Pic(X) = H?*(X, Z), and we
can choose a basis e € H?(X,Z) corresponding to the ample generator
of Pic(X).

Let ¢;(X) = cie,c,(X) = c,&€ where e? = deg,e(e) = 1. If ¢, is positive,
then X is Fano, and there are only finitely many possibilities [Mu]. The
case ¢; = 0 is excluded, so that we are left with ¢; < 0, i.e. the canonical
bundle of X is ample.

The Riemann-Roch formula (X, Zx)=1—- h3(X, Ox) = i C1Cy
shows that the set of possible Chern numbers ¢, ¢, is bounded from below:
24(1 — ¢) € ¢;c,. Using Yau’s inequality 8c¢;(X)c,(X) < 3¢;(X)3? we find
that d | c, |3 < 64(c — 1), i.e. the degree d and the order of divisibility | ¢, | of
c;(X) is bounded. Now Kollar’s finiteness theorem [Ko2] yields the
assertion.

ExaMPLE 15. Let X be a 1-connected, smooth projective 3-fold with
H,(X,Z) =17 and w,(X) # 0. If b3(X) <2, then A3(X, 7x) <1 and X
must be Fano of index 1 or 3. For b;(X) = 4 we have that X is either Fano,
or h3(X, £x) = 2 and X is of general type with d|c; |3 <

Note that the assumption w, # 0 was only used to exclude Calabi-Yau
3-folds.

5.2 3-FOLDS WITH b, = 2

Let X be a 1l-connected, closed, oriented, 6-dimensional differentiable
manifold with H,(X, Z) =

We choose a basis e;, e, for H2(X,Z) and set a, = e';',al == efez,az
= eleg, as; = ei; the cubic polynomial f associated to the cup-form
of X is then given by f =a¢X®+ 3a, X?Y + 3a,XY? + a;Y3. The
discriminant of f is by definition A(f) = aga3 3a — 6apa,a,a;
+ 4a0a§ + 4a’ 1a3; up to a factor it is simply the dlscrlmmant of the
Hessian H; = 62[(apa, — a}) X2 + (apas — a1a,) XY + (a,a3 — a)Y?] of
FiA(f) = (agas — a,a,)? — 4(apa, — at) (a,as — az).




CUBIC FORMS AND COMPLEX 3-FOLDS 327

The last identity shows that A(f) is always a square modulo 4, i.e.
A(f) =0, 1(mod 4).

PROPOSITION 17. Every integer A =0, 1(mod4) is realizable as discri-
minant of a compact complex 3-fold.

Proof. Consider the projectivization X = Pp2(E) of a holomorphic
rank-2 vector bundle E over the plane. In terms of the standard basis
of HX(X,Z)(e; = n*h, e, = ¢,(£p (1)) the cubic polynomial associated
to X is given by f = (¢} — ;) X3 4+ 3(—¢;) X2Y + 3XY?, where ¢; = ¢;(E)
are the Chern classes of E considered as integers. Inserting this into the
discriminant formula yields A(f) = cf — 4¢,. Since every pair ¢y, ¢, OCcurs
as pair of Chern classes of a holomorphic rank-2 bundle on P2, every
integer A = 0, 1(mod4) can be realized as discriminant of a holomorphic
projective bundle Pp2 (F).

Recall from section 3.2 that there are 4 different types of SL(2)-orbits
of complex binary cubics: non-singular forms f (with A(f) # 0), and three
orbits of singular cubics, represented by the normal forms X?Y, X3, and 0.

PROPOSITION 18. All four types of complex binary cubics are realizable
by complex 3-folds.

Proof. We have seen this already for non-singular cubics. Clearly the
product P! x P? realizes the normal form X2?Y. The cubics of normal
forms X3 or 0 are degenerate, i.e. their Hessians vanish identically. There-
fore they can only be realized by non-Kéhlerian 3-folds. To realize X3 one
can blow up a point in an elliptic fiber bundle over a surface Y with
b,(Y) = 3; the trivial form occurs for elliptic fiber bundles over a surface
with b, = 4.

More detailed investigations of the possible homotopy types of real or
complex manifolds with b, = 2 will appear elsewhere [Sch].

Here we only want to illustrate an interesting phenomenon which relates
the ample cone of a projective 3-fold with b, = 2 to the Hessian of its
cup-form.

PROPOSITION 19. Let X be a smooth projective 3-fold with
by(X) =2. The ample cone €x is contained in the Hesse cone
Hri={he H*(X,R)|det(F(h)) < 0}.

Proof. This is only a special case of our general result in section 4.3.
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REMARK 14. The Hessian of a binary form F € S?®HV is identically zero
iff F is degenerate; it is negative semi-definite if F is non-degenerate and
A(F) < 0; it is indefinite iff A(F) > 0[Ca]. Only in the indefinite case
A(F) > 0 can the closure &7 := {h e Hg|det F'(h) <0} of the Hesse
cone be a proper subset of Hy.

EXAMPLE 16. Let P = Pp2(E) be the projectivization of a rank-2
vector bundle E with Chern classes c¢; = ¢;(£). The cup-form of P
yields the cubic polynomial [ = (cf — ) X2+ 3(—c) XY +3XY?
whose Hessian is Hy= (—c¢;)X?+ ¢; XY — Y2, Rewriting H; as
Hy= —;[QY - 1 X)2+ X2(4e, — )] = 2L [QY — e, X) 2 — A(f) X2] we
find 3 possibilities for the Hesse cone:

) A(f) <0:2 =H2(P,R)\{0}

i) A(f)=0:2¢;=H?*(P,R)\L., for a real line L. depending on
¢ (L., = R(2,¢)) in the coordinates X, Y)

i) A(f)>0:27, is an open cone whose angle is determined

by A(f) ((Z+)VANHX)(Z-)VA(f)X)>0 in coordinates
X,Z:=2Y - X).

5.3 3-FOLDS WITH b, > 3

Let X be a 1-connected, compact complex 3-fold with H,(X,Z) = Z93.
The cup-form of X gives rise to a curve Cy of degree 3 in the projective
plane P(H?(X, C)):

Cx:={<h>eP(H*(X,C))|h?=0}.

A first natural question is which types of plane cubic curves occur in
this way?

Recall that there are 10 types of plane cubics, namely: 1) non-singular
cubics, 2) irreducible cubics with a node, 3) irreducible cubics with a cusp,
4) reducible cubics consisting of a smooth conic and a transversal line,
5) smooth conics with a tangent line, 6) three lines forming a triangle, 7) three
distinct lines through a common point, 8) a double line with a third skew
line, 9) a triple line, 10) the trivial ‘cubic’ with equation 0.

LEMMA 4. If the 3-fold X has a non-trivial Hodge number
h29(X) #0, then Cx is of type 4), 6) 9) or 10).
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Proof. Choose basis vectors et/ € H%!(X), so that every h € H*(X, C)
can be uniquely written as 4 = xe>? + yel:! + ze%2.
Then clearly 43 = y[y2(el!)3 + 6xz(e20 - el! - e%2)].

We now realize the cubics of types 7)-10). These cubics are degenerate,
i.e. they are cones, and therefore their Hessians vanish identically. From
section 4.3 we know that they can not be realized by Kéhlerian 3-folds.

PROPOSITION 20. The plane cubics of types 7)-10) can all be realized
by I-connected, non-Kdhlerian 3-folds.

Proof. ‘Cubics’ of type 10) can be realized by elliptic fibre bundles
over surfaces Y with b,(Y) = 5. In order to realize cubics of type 9) or 7)
one blows up one or two points in an elliptic fibre bundle over a surface
with b, = 4 or 3 respectively. The realization of a type 8) cubic is a little
trickier: One starts with an elliptic fibre bundle over a surface Y with
b,(Y) =3, and blows up one of its fibers. The resulting 3-fold X’ has
b,(X') =2 and Fx- = 0. Now choose a line / in the exceptional divisor E
of X', and let X be the blow-up of X along /. The cup-form of X yields
the cubic polynomial x2[y(—3/:E)~— x(degNg,x-)] with a non-zero
coefficient — 3/ E = 3.

There are four types of complex cubics which we have been able to
realize by projective 3-folds.

PROPOSITION 21. Cubics of type 1), 3), 4) and 6) are realizable by
I-connected projective 3-folds.

Proof. Type 1) occurs for blow-ups of complete intersections in two
distinct points. The product P! x P! x P! realizes a triangle, whereas most
projective bundles over a surface with b, = 2 lead to the union of a smooth
conic and a transversal line.

Irreducible cubics with a cusp can be obtained by blowing-up a line and
a point in P3. The resulting 3-fold yields the cubic polynomial X3 — 3 XY?2
—2Y3 + 23 =X+ Y)2(X-2Y) + Z3.

The remaining two types of cubics are cubics with a node (type 2)), and
smooth conics with a tangent line (type 5)). We do not know if these types
are realizable by projective 3-folds. A non-Kéhlerian 3-fold whose cup-form
yields a nodal cubic can be constructed: one just takes the blow-up of two

suitable curves in Oguiso’s Calabi-Yau 3-fold with b, =1 and vanishing
cup-form.
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Finally we like to show that the non-emptiness condition on the index cone
of a projective 3-fold with 4£%2 = 0 gives non-trivial restrictions for the
possible cup-forms if b, > 4. Further investigations of this condition will
appear elsewhere [Sch].

ExXAMPLE 17. Let H be a free Z-module of rank 4 with basis
(€éi)i=1,...4. Consider a trilinear form F e S?*HY and its adjoint map
F':H— S?Hv. The image F‘(h) of an element 47 € H is in terms of
the chosen basis (e;);-; .. 4 represented by the symmetric 4 X 4-matrix
[[he;e;1]: =1, 4. Suppose this matrix is a diagonal sum [[ke;e]]; ;-1
@ [[herel) k. 1=3 4 such that the determinants of both 2 X 2-matrices are
negative for every 7 € H\{0}.

In this case F*(h) were of signature (1, —1, 1, —1) for every h € H\{0},
and we would have I = 27 = 0.

All these conditions can be met, e.g. by setting ele, = e; = eje, = e,
= 1,e,e? = e;e2 =2, and e;eje, = 0 otherwise. In this particular case the
image of 4 = Z?:  h;e; under F'is represented by the matrix

h; hy + 2h,

h1 + 2h2 2h1 + hZ

hy hs + 2hy

h; + 2hy 2h; + hy

which has a positive determinant unless # = 0.
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