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where £, c{ (^P(j-)(1)), h e H2(Y, Z), and x e Z. 77ze

topological invariants of P(ii) are:

w2(V{E)) n*(w2{Y) + Cl(E))iPl(E))
n *[cfY)2 - 2c2(Y) + Cl(E)2 - 4c2(E)l b3(P(E)) 0

Proof. The Leray-Hirsch theorem identifies the cohomology ring
H*(P(E), Z) with the ring H* (Y, Z) [£,]/<^2 + Cl(E) ^ + c2(e)> ; this determines

the cup-form. In order to calculate the characteristic classes one uses the exact

sequence 0 -> YR{E) n*E (x) Tr{E) n*TY~+ 0. b3(P(E)) 0

follows from Z?i(T) 0 and the Leray-Hirsch theorem.

4.3 Examples of 1-connected non-Kählerian 3-folds

Recall that the Hessian of a symmetric trilinear form F e S3HV

on a free Z-module H of finite rank was defined as the composition

Hf: S2Hw Z. In terms of coordinates on H it is given

by the determinant det (a^.), where / eC[//c]3 is the homogeneous
cubic polynomial associated with F.

Proposition 16. Let F be a symmetric trilinear form whose Hessian
vanishes identically. Then F is not realizable as cup-form of a Kählerian
3-fold.

Proof. Let X be a complex 3-fold with a Kähler metric g. The Kähler
class [coJ e H2(X,R) defines a multiplication map • [coj : H2(X, R)

H4{X, R), which is an isomorphism by the Hard Lefschetz Theorem

[G/H]. In section 3.1 we have seen that this is not possible if the Hessian

of the cup-form vanishes.

Corollary 6. Cubic forms f e C [Hc\ 3 which depend on strictly less

than b rkzH variables are not realizable as cup-forms of Kählerian

3-folds with b2 - b.

By considering the Hessian of a cup-form over the reals one obtains further
conditions.

Definition 4. Let F e S3HV be a symmetric trilinear form on a free
Z-module of rank b.

The Hesse cone of F is the subset XYF C HR defined by
YYF: {h e HR | - \)b det(F'(A)) < 0}.
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The index cone fF of F is the subset fF : {h e 2fp\Ft (h) e S2H R

has signature (1, - 1, - 1)}.

Clearly fF is an open subcone of XfF which coincides with Xfp iff b ^ 2.

Theorem 5. Let Fx e S3H2(X,Zy be the cup-form of a smooth

projective 3-fold with h°'2(X) 0. Then Fx has a non-empty index

cone.

Proof. Let h e H2(X, Z) be the dual class of a hyperplane section Y in

some projective embedding. The inclusion / : Y ^ X induces a

monomorphem /* : H2(X, Z) - H2(Y, Z) by the weak Lefschetz theorem. The

symmetric bilinear form Fx(h) e S2H2(X, Z)v is simply the pull-back of the

cup-form of Y under the inclusion /*; it is therefore non-degenerate by the

Hard Lefschetz theorem [L]. Applying the Hodge index theorem to Y we see

that the real bilinear form Fx(h) e S2H2(X, R)v must have one positive
and b — 1 negative eigenvalues. In other words: h e IFx.

Remark 13. This result has two applications: it provides topological
'upper bounds' for the ample cone of a projective 3-fold with h°>2 0,

and if gives further restrictions on symmetric trilinear forms to be realizable

as cup-forms of projective 3-folds with /z0'2 0 if b ^ 4.

These applications will be discussed in section 5.

We will now describe examples of 1-connected, non-Kählerian, complex
3-folds and determine their topological structure.

Example 10 (Calabi-Eckmann). E. Calabi and B. Eckmann have
defined complex structures XT, depending on a parameter t, on the product
S3 x S3[C/E]. Their manifolds are principal fiber bundles over P1 xP1
whose fiber and structure group is the elliptic curve
FT C/z@Zt, Im(x) > 0.

The Calabi-Eckmann manifolds are homogeneous, non-Kählerian 3-folds
of algebraic dimension 2.

Example 11 (Maeda). H. Maeda has generalized the Calabi-Eckmann
construction. He constructed fiber bundles X[ over Hirzebruch surfaces
¥„, n > 0, whose fiber and structure group are an elliptic curve ET and
Aut(Et) respectively [M]. X\ is again diffeomorphic to S3 x and
therefore non-Kählerian. Maeda's manifolds X'T are homogeneous if and
only if n 0 in which case they are Calabi-Eckmann 3-folds.
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The Calabi-Eckmann construction can also be generalized in the following
way:

Let S2 x S4 be the non-trivial S4-bundle over S2, i.e. S2 x S4 is the

unique 1-connected, closed, oriented, differentiable 6-manifold with
H2(S2 x S4, Z) Z and b3 0, whose cup-form and Pontrjagin class

vanish, but whose Stiefel-Whitney class w2 is non-zero.

Theorem 6. For any integer b ^ 0 there exist compact complex
3-folds Xbi and Xb if b ^ 1, which are homeomorphic to

US2 x S4#b+1S3 x S3, and S2 x S'h^S2 x S4$b + iS3 x S3.

Proof. Let Y be a 1-connected, compact complex surface with

pg{Y) 0 and b2(Y) ^ 2, and let E C/r be the elliptic curve associated

to the lattice T C C. We want to construct the required 3-folds as total
spaces of principal ^-bundles over Y. Let c: H2(Y, Z) -> T be an arbitrary
epimorphism. The corresponding cohomology class c e H2(Y,T) defines a

topological principal bundle over Y with fiber and structure group E — C/r
as follows immediately from the identification of the classifying space

BE K(T, 2).

Let $y{E) be the sheaf of germs of holomorphic maps from Y to E. We

have a short exact sequence 0 F âY 0Y{E) 0 and a corresponding

exact cohomology sequence

0y{E))VHT)-»• fY)~*

By our assumptions ô is an isomorphism, so that every topological principal

E-bundle admits a holomorphic structure. Let X be the total space

of such a bundle corresponding to a surjective map c: H2(Y, Z) -> T. The

homotopy sequence of the fibration p:X^> Y yields the sequence

0 - n2(X) ^ n2(Y) -> n^E)-»^ - 0

Since Y is 1-connected, n2(Y) can be identified with H2(Y,Z), and

then the boundary map n2(Y) -> iii(E) becomes the characteristic map

c : H2 (Y, Z) -> T of the bundle. This implies n} (X) {1}, whereas H2 (X, Z)
is given by: 0 -» H2(X, Z) ^ H2(Y, Z) 4 r - 0.

In particular, H2(X,Z) is free as a submodule of H2(Y, Z), and by

dualizing the last sequence we obtain an identification (via p*)

H2(X,Z) H2(Y,Z)/tv
The cup-form Fx of X is therefore trivial. In order to calculate P\{X)

and w2(X), we use the exact sequence of tangent sheaves: 0Tx/Y~^ Tx
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-/?*7Y->0. Since TX/y is a trivial bundle, the characteristic classes

of X are simply the pullbacks of the corresponding classes of Y. But the

map p*://4(T,Z) -*H4(X,Z) is zero, since <p*(B) u p*(a), [X] >
< s u a,p* [X] > 0 for all classes 8 e H4(Y, Z), and a e H2(Y, Z).
Thus pi(X) 0, and w2(X) is the residue of w2(Y) e H2(Y, Z/2)

modulo Tv/2rv.
The Euler characteristic of X is zero, so that from b2(X) b2(Y) - 2

we find b2(X) 2(b2(Y) - 1). The system of invariants associated to the

manifold X is therefore given by

(My) - 1, Z)/rv, w2(modrv/2rv),0, 0, 0)

i.e. X is diffeomorphic to

h2m-2S2xS*h2(r)-iS3 x S3 if e rv!r.
and to S2 x S4h,2(Y)^S2 x S4lb,m.iS3 x S3 if b2(Y) ^ 3, and

w2(y) $ rv/2rv •

Example 12 (Kato). In the two papers [Kl], [K2] M. Kato studies the

class of compact, complex 3-folds X containing smooth rational curves with
neighborhoods biholomorphic to those of projective lines in P3. On this class

of 3-folds, called class L, he defines a semi-group structure + with neutral
element P3.

Kato's connecting operation + is defined by removing Tines' L, C Xt
from 3-folds Xf9i~ 1, 2, and by identifying the complements Xj\Lj along

open sets C7/\L/ obtained from suitable neighborhoods £/, C Xl.
Starting with a certain elliptic fiber space Xx over the blow-up

of P1 x P1 in a point, he constructs a sequence of 3-folds Xn : Xx
+ Xn^ x, n ^ 2. The 3-folds Xn are 1-connected spin-manifolds with
H2(Xn, Z) Z. Their cup-forms FXfl, and their Pontrjagin classes

px{Xn) are in terms of a (normalized) generator en eH2(Xn,Z) and its
dual class &neH4(Xn, Z) given by FXn (xe„) (n - l)x\ and px(Xn)

4(n - l)s„ (e„(e„) 1). The third Betti-number of Xn is An.
In particular, Xx is diffeomorphic to S2 x S4$2S3 x S3, and X2 is

diffeomorphic to P3U3xS3. It is interesting to note that the Chern-
numbers c],cxc2 of the X„ are cj 64(1 - n), cxc2 24(1 - n), i.e. they
satisfy 8c!C2 3c\. For projective manifolds of general type this equality is
characteristic for ball quotients [Y].
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Example 13 (Twistor spaces). Let p : Z -> M be the twistor fibration of
a closed, oriented Riemannian 4-manifold (M, g). Z carries a natural almost

complex structure which is integrable if and only if g is self-dual [A/H/S].
Examples of 1-connected 4-manifolds which admit self-dual structures are

S4J„P2, and TO-surfaces.
The total spaces of their twistor fibrations are 1-connected complex 3-folds

which may be Moishezon for S4 and jj „P2 [C], but which are usually
non-Kähler [Hi]. We leave it to the reader to calculate the topological
invariants of these 3-folds. There is an interesting relation between Twistor

spaces of connected sums and Kato's connection operation + for class L
manifolds [K2], [D/F].

Example 14 (Oguiso). In a recent preprint [Ol] K. Oguiso constructs

examples of 1-connected, Moishezon Calabi-Yau 3-folds with very interesting
cup-forms. He proves that for every integer d ^ 1 there exists a smooth

complete intersection X'd of type (2,4) in P5 which contains a non-singular
rational curve Cd of degree d with normal bundle NC(l/xd $cd{~ l)®2.

The 3-fold X'd can now be flopped along Cd, i.e. Cd can be blown up
to P{NCd/xd) P1 x P1, and then 'blown down in the other direction'.
The resulting 3-fold Xd is a 1-connected Moishezon manifold with trivial
canonical bundle and cup-form FX(i given by FXd(xed) (d3 - 8)x3. Here

edeH2(Xd,Z) is the normalized generator corresponding to the strict
transform of the negative of a hyperplane section of The Pontrjagin
class of Xd is pi(Xd) (112 + 4d)zd where &d e H4(Xd, Z) denotes the

generator with zd{ed) 1. Since the Euler-number does not change under a

flop we have b2(Xd) 180 for every d.

5. Complex 3-folds with small b2

In this section we investigate the following natural problem: Which
cubic forms can be realized as cup-forms of compact complex 3-folds? For
small b2 something can be said: Any core of a 1-connected, closed, oriented

differentiable 6-manifold with H2(X, Z) Z is homotopy equivalent to the

core of a 1-connected complex 3-fold. In the case b2 2, at least every
discriminant A is realizable by a complex manifold. If b2 3 we can realize

all types of complex cubics with one exception, the union of a smooth conic

and a tangent line. In addition to these realization results we prove a finiteness
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