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318 CH. OKONEK AND A. VAN DE VEN

REMARK 12. It is very likely that there exist non-integrable almost
complex structures on manifolds X as above, but probably this is hard to
prove. It is also not unlikely that the Chern numbers of complex 3-folds are
not topological invariants. A possible way to check this would be, to run a
computer search for 3-folds given by certain standard constructions.

4.2 STANDARD CONSTRUCTIONS

For later use we investigate the topological invariants of complex 3-folds
which can be obtained by certain simple standard constructions like complete
intersections, simple cyclic coverings, blow-ups of points and curves, and
projective bundles.

PrOPOSITION 11 (Libgober/Wood). Let X C P3**" be a smooth
complete intersection of multidegree d = (d,, ...,d,). Choose a normalized
basis ee H*(X,Z), and let ce€ H*(X,Z) be defined by ¢e(e) = 1.
Then the invariants of X are:

Fx(xe) = dx® where d=1],_,

pX)y=d@d+r—Y,_,d)e, and

bi(X)=4—-4[4+r—%,_,d)*-3@4+r-3,
+2(4+r— Y, _,d)].

Proof. [L/W].

r

di,w,(X)=@G+r- Y%,

i:

]di)e’

r

_d) @G +r= Y, d))

PROPOSITION 12. Let X be a smooth, I-connected, complex projective
3-fold, and let n:X' — X beasimple cyclic covering of degree d branched
along a non-singular ample divisor B €|L®? |. X’ is smooth, projective,
I-connected, and nn*:H?*(X,Z)—> H*(X',Z) is an isomorphism. The
invariants of X and X' are related by the formulae:

(¥ Fyr = dFy, wa(X7) — T wy(X) = (d — Dr*er(L),
PrX) — w*py(X) = (1 —d) (1 + d)n*ey(L)?, and
by(X) = dby(X) + (d — 1) (b2(B) — 2b:(X)) .

Proof. X'is clearly smooth and projective. By a theorem of M. Cornalba
n: X’ — X is a 3-equivalence, i.e. m4: @, (X") = m;(X) is bijective for i < 2,
and surjective for i = 3[Co]. X’ is therefore 1-connected, and n*: H*(X, Z)
— H2(X',Z) is an isomorphism. The relation between Fy. and Fyx is
obvious, whereas the formula for b;(X’) follows from =,;(B) = {1} and
standard properties of Euler numbers.
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In order to calculate w,(X’') and p;(X’) we compute the Chern
classes of X':c;(X') - n*c;(X) =0 -d)n*c; (L), c2(X") — n*c,(X)
=1 -d)yn*[e;(X)ei(L) — dei(L)?].

The latter formulae follow from the description of X’ as a divisor in
the total space of the line bundle L.

EXAMPLE 9. Let X be a d-fold, simple cyclic covering of P3 branched
along a smooth surface B C P3 of degree dl,/>1. Let e e H*(X,Z)
correspond to the preimage of a plane in P3. The invariants of X are
then given by:

Fx(xe)=dx3, w,(X) =@+ U -d)e,pi(X)=d[4+1 -d)A +d)I?]e
(e(e)=1),b5(X) = (d—1)(d?I* - 4d] + 6)dI .

PROPOSITION 13. Let cs:)A( — X be the blow-up of a complex 3-fold
X ina point, and let e € H?>(X,Z) be the class of the exceptional divisor.
The invariants of X and X are related by the following formulae:
F3(c*h+xe)=Fx(h) +x? ¥V he HX(X,Z),x € Z, w,(X) = 0% wy(X),
P1(X) =c*pi1(X) + 4(e? —c*ci(X) - e), b3(X) = b3(X) .

Prvof. Standard arguments, see [G/H]. The Chern classes are related
by ¢;(X) = 6*ci(X) — 2e,c,(X) = 6*c,(X).

PROPOSITION 14. Let o:X— X be the blow-up of a complex 3-fold
X along a smooth curve C of genus g, and let ec H 2(X Z) be the
class of the exceptional divisor. The invariants of X and X are

related by:
Fi(o*h+xe) = Fx(h) —3h - Cx?*— degN¢c,xx* ¥V he H*(X, Z),
x € Z,wy(X) = 6*wy(X) + e, py(X) = 6*py (X) + (e — 26*C),
by(X) = b5 (X) + 2g .

_ Proof [G/H]. The Chern classes are given by cl(X) = oc*c(X)
~ ¢, cz(X) = 6*(c2(X)+ C) — 6*c,;(X) - e.

PROPOSITION 15.  Let E be a holomorphic vector bundle of rank 2 with
Chern classes c¢;(E),i= 1,2 overa I- connected, compact complex surface

Y, and let n:P(E)—>Y be the projective bundle of lines in the fibers
of E. The cup-form of P(E) is given by

Fey(h+x8) = x[Bh%) = Bei(E) - h)x + (1 (E)? — cy(E))x?] ,
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where & = c,(Zp (1), he H*(Y,Z), and xe€Z. The other topo-
logical invariants of P(E) are:

w2 (P(E)) = n*(w2(Y) + 1 (E)), pi (E))
= n*[c1(Y)?2 = 2¢:(Y) + 1 (E)? = 4c2(E)], b3(P(E)) = 0.

Proof. The Leray-Hirsch theorem identifies the cohomology ring
H*(P(E), Z) with the ring H*(Y, Z) [E]/ <t2+ c,(E) - £ + c,(E)> 5 this determines
the cup-form. In order to calculate the characteristic classes one uses the exact
sequence 0 = Zppy = A*E® Opiy(1) = Tppy = n* Ty~ 0. b3(P(E)) =0
follows from b;(Y) = 0 and the Leray-Hirsch theorem.

4.3 EXAMPLES OF 1-CONNECTED NON-KAHLERIAN 3-FOLDS

Recall that the Hessian of a symmetric trilinear form F e S3HY

on a free Z-module H of finite rank was defined as the composition
disc

HF:HE; S2HY = Z. In terms of coordinates &;,...,§, on H it is given

by the determinant det (affggj)’ where f € C[Hc¢]; is the homogeneous

cubic polynomial associated with F.

PROPOSITION 16. Let F be a symmetric trilinear form whose Hessian
vanishes identically. Then F is not realizable as cup-form of a Kdihlerian
3-fold.

Proof. Let X be a complex 3-fold with a Kédhler metric g. The Kéahler
class [w,] € H*(X,R) defines a multiplication map - [w,]: H?*(X,R)
— H4(X,R), which is an isomorphism by the Hard Lefschetz Theorem
[G/H]. In section 3.1 we have seen that this is not possible if the Hessian
of the cup-form vanishes.

COROLLARY 6. Cubic forms f € C[Hcl; which depend on strictly less
than b = rk;,H variables are not realizable as cup-forms of Kdhlerian
3-folds with b, = b.

By considering the Hessian of a cup-form over the reals one obtains further
conditions.

DEFINITION 4. Let F e S*HY be a symmetric trilinear form on a free
Z-module of rank b.

The Hesse cone of F is the subset 2¢r C Hg defined by
Hp:={h e Hgl|(~1)bdet(F'(h)) <0}.
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