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The number of integral classes in these orbits is therefore finite. We have,
however, an even stronger finiteness theorem for stable ternary cubics:

PROPOSITION 7. Let H be a free Z-module of rank 3. There exist only
finitely many classes of symmetric trilinear forms F € S3HY with a fixed
discriminant A + 0.

Proof. In terms of Arnhold’s invariants S and 7, A is given by
A = S3 — T2. By a theorem of C. Siegel [Si], the diophantine equation
S3 — T2 = A has only finitely many integral solution (S, T') for any integer
A # 0. For each of these solutions the corresponding point in S3H ¢/ sz mc)
lies outside of the discriminant curve, so that the m-fiber over it is a closed
SL(H¢c)-orbit. The finiteness of the class number then follows from the
Borel/Harish-Chandra theorem.

A famous special case of Siegel’s theorem is Bachet’s equation
S3 — T2 = 2; it has only the two obvious solutions (3, £ 5).

REMARK 10. To get finiteness results for ternary cubic forms it is not
sufficient to fix the J-invariant (instead of the discriminant): The forms
fm=X3+XZ*+ Z¥+ mY?Z, m € Z\{0}, all have the same J-invariant,
but they are not equivalent, even over Q, since they have bad reduction at
different primes p | m.

4. INVARIANTS OF COMPLEX 3-FOLDS

In this section we begin to investigate the topology of 1-connected,
compact, complex 3-folds. After a brief discussion of the possible systems of
Chern numbers of almost complex 6-manifolds, we study the behaviour of
the topological invariants of complex 3-folds under certain standard
constructions, like e.g. branched coverings, or blow-ups of points and curves.
Then we describe some interesting examples of 1-connected, non-Kéahlerian
3-folds, including a new construction method which generalizes the Calabi-
Eckmann manifolds. These examples will be needed in the next section in order
to realize complex types of cubic forms as cup-forms of complex 3-folds.

4.1 CHERN NUMBERS OF ALMOST COMPLEX STRUCTURES

Let X be a closed, oriented, 6-dimensional differentiable manifold. The
tangent bundle of X is induced by a classifying map ?x: X — BSO(6) which
is unique up to homotopy. By an almost complex structure on X we mean
the homotopy class [fx] of a lifting y: X = BU(3) of tx to BU(3).
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PROPOSITION 8. Every closed, oriented, 6-dimensional C>-manifold X
without 2-torsion in H?3(X,Z) admits an almost complex structure. There
Is a 1-1 correspondence between almost complex structures on X and integral
lifts WeH*X,Z) of wy(X). The Chern classes c¢; of the almost
complex manifold (X, W) are given by ¢, =W, ¢, = %(W2 — pi1(X)).

Proof (cf. [W]). The obstructions against lifting 7x to BU(3) lie
in the cohomology groups H*'(X,n:(SO6)/y@),i=0,1,...,5.
Since SO(6)/ys = P* has only one nontrivial homotopy group
7,(SO(6)/y@3)) = Z in dimensions i < 5, there is in fact only one obstruction
o(ty) € H3(X,Z), and this obstruction can be identified with the image
of w,(X) under the Bockstein homomorphism p: H>(X,Z,,) > H*(X, Z).
Since H?3(X,Z) has no 2-torsion by assumption, Bw,(X) must be equal to
zero, so that X has at least one almost complex structure [fy] € [X, BUQB)].
Standard homotopy arguments show now that the map, which assigns to an
almost complex structure [7x] its first Chern class #%c¢;, induces a 1-1 corres-
pondence between integral lifts W e H?(X,Z) of w,(X) and homotopy
classes of liftings of [fx] to BU(3).

The second Chern class ¢, of the almost complex manifold (X, W) is
determined by W? — 2¢, = p,(X).

The Chern numbers c? ,C1Cy,c3 of an almost complex manifold X
of real dimension 6 satisfy the following congruences: ¢; = 0(mod 2),
cic; = 0(mod 24), c¢; = 0(mod 2). Conversely, given a triple (a, b,c) of
integers @ = 0(mod 2), b = 0(mod 24), and c = 0(mod2), there always
exists an almost complex manifold X of dimension 6 with Chern numbers
ci=a,cic;=b, c3 = c.

It 1s not totally clear, however, that one can find a connected manifold X
with prescribed Chern numbers [H1].

PROPOSITION 9.  Every triple (a, b, c) € 93 satisfying a = 0(mod 2),
b = 0(mod 24), ¢ = 0(mod 2) is realizable as the Chern numbers of an almost
complex 6-manifold.

Proof. Consider the complete intersection V(f, g) C P> defined by the
polynomials f(z) = z¢ + 2} + 225 — 25 — 2, — 225, and g(z) =z + 2°
+ 275 — 23 — 24 — 222 [Wel. V(f, g) is a singular 3-fold with 90 ordinary
double points, and every small resolution V of these nodes is a (not necessarily
projective) Calabi-Yau 3-fold with Euler number 4. Suppose now that a
prescribed triple (a,b,c) € Z®3 is realized by a possibly disconnected
almost complex manifold X =II,_,X;. If we form the connected sum

!
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X' of the X;, we obtain a connected almost complex manifold X’ with
Chern numbers ¢3 = g, ¢;c, = b, but with ¢; = ¢ — 2(|I] = 1).

If |7| > 1 take the connected sum of X’ with |I| — 1 copies of the
complex manifold V. Since V is Calabi-Yau, the Chern numbers cf and c¢;c;
remain unchanged, whereas the Euler number of X",/ _ V' becomes c¢; = c.

REMARK 11. The above argument has been suggested by F. Hirzebruch
after talk at the MPI, in which one of us had sketched a less geometric proof
of the proposition.

There is another question which is related to the result above: Fix a closed,
oriented, 6-dimensional differentiable manifold X. Which pairs (a, b) of
integers with ¢ = 0(mod2) and b = 0(mod 24) occur as Chern numbers
c? and c¢,c, of almost complex structures on X, and in how many ways?

For manifolds with b,(X) = 1 the Chern numbers determine the almost
complex structure. For manifolds with », > 1 this is no longer true. It is
possible to construct infinitely many distinct almost complex structures with
the same Chern numbers on a hypersurface of bidegree (3,3) in P2 X P2.

An almost complex structure [fx] on a differentiable 6-manifold X is said
to be integrable if Iy is homotopic to the classifying map of a complex 3-fold.
We are not aware of any example of an almost complex 6-manifold which is
known not be integrable. On the other hand, it is also unknown whether or
not the Chern numbers ¢, ¢;c, of integrable almost complex manifold are
topological invariants. The following remark might therefore be of some
nterest:

PROPOSITION 10. If the Chern numbers of complex 3-folds are topo-
logical invariants, then there exist almost complex structures which are not
integrable.

Proof. Consider a closed, oriented differentiable 6-manifold X without
2-torsion in H3(X, Z). Fix any almost complex structure on X with first
Chern class W e H?(X, Z).

Every element x € H?(X, Z) defines a new almost complex structure
on X with first Chern class W + 2x, and it is easy to see that these two
almost complex structures have the same Chern numbers if and only if x
satisfies the equations p;(X)-x =0, and 3W2-x+ 6W - x2 + 4x3 = 0.

Suppose now (X, W) is integrable, p,(X) # 0, and choose x e H?*(X,Z)
such that p,;(X) - x # 0. Then clearly, either none of the almost complex

manifolds (X, W + 2x) is integrable, or the Chern numbers of complex 3-folds
are not topologically invariant.
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REMARK 12. It is very likely that there exist non-integrable almost
complex structures on manifolds X as above, but probably this is hard to
prove. It is also not unlikely that the Chern numbers of complex 3-folds are
not topological invariants. A possible way to check this would be, to run a
computer search for 3-folds given by certain standard constructions.

4.2 STANDARD CONSTRUCTIONS

For later use we investigate the topological invariants of complex 3-folds
which can be obtained by certain simple standard constructions like complete
intersections, simple cyclic coverings, blow-ups of points and curves, and
projective bundles.

PrOPOSITION 11 (Libgober/Wood). Let X C P3**" be a smooth
complete intersection of multidegree d = (d,, ...,d,). Choose a normalized
basis ee H*(X,Z), and let ce€ H*(X,Z) be defined by ¢e(e) = 1.
Then the invariants of X are:

Fx(xe) = dx® where d=1],_,

pX)y=d@d+r—Y,_,d)e, and

bi(X)=4—-4[4+r—%,_,d)*-3@4+r-3,
+2(4+r— Y, _,d)].

Proof. [L/W].

r

di,w,(X)=@G+r- Y%,

i:

]di)e’

r

_d) @G +r= Y, d))

PROPOSITION 12. Let X be a smooth, I-connected, complex projective
3-fold, and let n:X' — X beasimple cyclic covering of degree d branched
along a non-singular ample divisor B €|L®? |. X’ is smooth, projective,
I-connected, and nn*:H?*(X,Z)—> H*(X',Z) is an isomorphism. The
invariants of X and X' are related by the formulae:

(¥ Fyr = dFy, wa(X7) — T wy(X) = (d — Dr*er(L),
PrX) — w*py(X) = (1 —d) (1 + d)n*ey(L)?, and
by(X) = dby(X) + (d — 1) (b2(B) — 2b:(X)) .

Proof. X'is clearly smooth and projective. By a theorem of M. Cornalba
n: X’ — X is a 3-equivalence, i.e. m4: @, (X") = m;(X) is bijective for i < 2,
and surjective for i = 3[Co]. X’ is therefore 1-connected, and n*: H*(X, Z)
— H2(X',Z) is an isomorphism. The relation between Fy. and Fyx is
obvious, whereas the formula for b;(X’) follows from =,;(B) = {1} and
standard properties of Euler numbers.
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